版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四省八校2024届高一数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的坐标是()A. B. C. D.2.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.93.等差数列{an}的前n项和为Sn,若S9=S4,则S13=()A.13 B.7 C.0 D.14.将图像向左平移个单位,所得的函数为()A. B.C. D.5.已知,则下列不等式一定成立的是()A. B. C. D.6.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.47.在中,,BC边上的高等于,则A. B. C. D.8.设,满足约束条件,则目标函数的最大值是()A.3 B. C.1 D.9.函数图象的一条对称轴在内,则满足此条件的一个值为()A. B. C. D.10.如图,在等腰梯形中,,于点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知过两点,的直线的倾斜角是,则______.12.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设的三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜公式”为.若,,则用“三斜公式”求得的面积为______.13.若角的终边过点,则______.14.在中,,则______.15.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.16.设向量,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.18.某质检机构检测某产品的质量是否合格,在甲、乙两厂匀速运行的自动包装传送带上每隔10分钟抽一包产品,称其质量(单位:克),分别记录抽查数据,获得质量数据茎叶图(如图).(1)该质检机构采用了哪种抽样方法抽取的产品?根据样本数据,求甲、乙两厂产品质量的平均数和中位数;(2)若从甲厂6件样品中随机抽取两件.①列举出所有可能的抽取结果;②记它们的质量分别是克,克,求的概率.19.已知幂函数的图像过点.(1)求函数的解析式;(2)设函数在是单调函数,求实数的取值范围.20.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积21.设等差数列中,.(1)求数列的通项公式;(2)若等比数列满足,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
,.故选C.2、A【解题分析】
根据求解.【题目详解】由题得.故选:A【题目点拨】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.3、C【解题分析】
由题意,利用等差数列前n项和公式求出a1=﹣6d,由此能求出S13的值.【题目详解】∵等差数列{an}的前n项和为Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故选:C.【题目点拨】本题考查等差数列的前n项和公式的应用,考查运算求解能力,是基础题.4、A【解题分析】
根据三角函数的图象的平移变换得到所求.【题目详解】由已知将函数y=cos2x的图象向左平移个单位,所得的函数为y=cos2(x)=cos(2x);故选:A.【题目点拨】本题考查了三角函数的图象的平移;明确平移规律是解答的关键.5、C【解题分析】试题分析:若,那么,A错;,B错;是单调递减函数当时,所以,C.正确;是减函数,所以,故选C.考点:不等式6、C【解题分析】
求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【题目详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【题目点拨】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.7、D【解题分析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.8、C【解题分析】
作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【题目详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【题目点拨】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.9、A【解题分析】
求出函数的对称轴方程,使得满足在内,解不等式即可求出满足此条件的一个φ值.【题目详解】解:函数图象的对称轴方程为:xk∈Z,函数图象的一条对称轴在内,所以当k=0时,φ故选A.【题目点拨】本题是基础题,考查三角函数的基本性质,不等式的解法,考查计算能力,能够充分利用基本函数的性质解题是学好数学的前提.10、A【解题分析】
根据等腰三角形的性质可得是的中点,由平面向量的加法运算法则结合向量平行的性质可得结果.【题目详解】因为,所以是的中点,可得,故选.【题目点拨】本题主要考查向量的几何运算以及向量平行的性质,属于简单题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【题目详解】解:由已知可得:,即,则.故答案为.【题目点拨】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.12、【解题分析】
先由,根据余弦定理,求出,再由,结合余弦定理,求出,再由题意即可得出结果.【题目详解】因为,所以,因此;又,由余弦定理可得,所以,因此.故答案为【题目点拨】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.13、-2【解题分析】
由正切函数定义计算.【题目详解】根据正切函数定义:.故答案为-2.【题目点拨】本题考查三角函数的定义,掌握三角函数定义是解题基础.14、【解题分析】
由已知求得,进一步求得,即可求出.【题目详解】由,得,即,,则,,,则.【题目点拨】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.15、3【解题分析】
根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案.【题目详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为.【题目点拨】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】因为,所以,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又,从而得到周长的取值范围.试题解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根据题意,得.由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为4.又,所以,所以.所以的周长的取值范围为.18、(1)系统抽样;乙厂产品质量的平均数,乙厂质量的中位数是113;甲厂质量的平均数,甲厂质量的中位数是113(2)①详见解析②【解题分析】
(1)根据抽样方式即可确定抽样方法;根据茎叶图中的数据,即可分别求得两组的平均数与中位数;(2)由甲厂的样品数据,即可由列举法得所有可能;根据列举的数据,即可得满足的情况,即可求得复合要求的概率.【题目详解】(1)由题意该质检机构抽取产品采用的抽样方法为系统抽样,甲厂质量的平均数,甲厂质量的中位数是113,乙厂产品质量的平均数,乙厂质量的中位数是113.(2)①从甲厂6件样品中随机抽取两件,分别为:,,,共15个.②设“”为事件,则事件共有5个结果:.所以的概率.【题目点拨】本题考查了茎叶图的简单应用,由茎叶图求平均值与中位数,列举法求古典概型概率的应用,属于基础题.19、(1);(2).【解题分析】
(1)利用幂函数过点即可求出函数的解析式;(2)利用二次函数对称轴与区间的位置,即可求出实数的取值范围.【题目详解】(1)因为的图像过点,所以,则,所以函数的解析式为:;(2)由(1)得,所以函数的对称轴为,若函数在是单调函数,则或,即或,所以实数的取值范围为.【题目点拨】本题考查了幂函数解析式的求解,二次函数单调区间与对称轴的位置关系,属于一般题.20、(1);(2).【解题分析】
(1)根据正弦定理把题设等式中的边换成相应角的正弦,化简整理可求得,进而求得;(2)根据余弦定理得,结合求得的值,进而由三角形的面积公式求得面积.【题目详解】(1)根据正弦定理,又,.(2)由余弦定理得:,代入得,故面积为【题目点拨】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 低碳环保建议书倡导书
- 二十四孝读后感
- 个人实习总结15篇
- 下半年个人工作总结15篇
- 个人违反廉洁纪律检讨书(6篇)
- 课件转盘游戏教学课件
- 2023年药品流通行业运行统计分析报告
- 清华园学校八年级上学期第一次月考语文试题(A4版、B4版含答案)
- 九年级上学期语文期中考试试卷
- 南京航空航天大学《电磁无损检测新技术》2021-2022学年期末试卷
- 校企共建项目合同违约条款
- GB/T 16716.5-2024包装与环境第5部分:能量回收
- 中小学教师如何做课题研究设计课件
- 《1.6.1 余弦定理》说课稿
- 急诊医学测试试题及答案
- 2024年广州铁路(集团)公司招聘468人易考易错模拟试题(共500题)试卷后附参考答案
- 第四单元两、三位数除以一位数(单元测试)-2024-2025学年三年级上册数学苏教版
- 2024年保安员证考试题库及答案(共240题)
- 人教版一年级上册数学期末试题及答案
- 浙江省9+1高中联盟2023-2024学年高一上学期11月期中英语试题 含解析
- 2025届高三化学一轮复习 第13讲 铁盐、亚铁盐及其转化 课件
评论
0/150
提交评论