




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省漯河市数学高一第二学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与平行,则等于()A.或 B.或 C. D.2.正方体中,则异面直线与所成的角是A.30° B.45° C.60° D.90°3.一个钟表的分针长为,经过分钟,分针扫过图形的面积是()A. B. C. D.4.设,函数在区间上是增函数,则()A. B.C. D.5.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,E,F分别是PA,AB的中点,∠CEF=90°.则球O的体积为()A. B. C. D.6.设函数,则满足的x的取值范围是()A. B. C. D.7.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.8.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形9.设△ABC的内角A,B,C所对的边长分别为a,b,c,且,则的最大值为()A. B.1 C. D.10.《九章算术》卷第六《均输》中,提到如下问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容,各多少?”其大致意思是说,若九节竹每节的容量依次成等差数列,下三节容量四升,上四节容量三升,则中间两节的容量各是()A.升、升 B.升、升C.升、升 D.升、升二、填空题:本大题共6小题,每小题5分,共30分。11.设表示不超过的最大整数,则________12.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.13.某县现有高中数学教师500人,统计这500人的学历情况,得到如下饼状图,该县今年计划招聘高中数学新教师,只招聘本科生和研究生,使得招聘后该县高中数学专科学历的教师比例下降到,且研究生的比例保持不变,则该县今年计划招聘的研究生人数为_______.14.若是等差数列,首项,,,则使前项和最大的自然数是________.15.已知函数的最小正周期为,且的图象过点,则方程所有解的和为________.16.某公司当月购进、、三种产品,数量分别为、、,现用分层抽样的方法从、、三种产品中抽出样本容量为的样本,若样本中型产品有件,则的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是等差数列的前项和,且,.(1)求通项公式;(2)若,求正整数的值.18.在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=(a2+c2﹣b2).(1)求角B的大小;(2)若边b=,求a+c的取值范围.19.在等差数列中,已知,.(I)求数列的通项公式;(II)求.20.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图21.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由题意可知且,解得.故选.2、C【解题分析】连接A,易知:平行A,∴异面直线与所成的角即异面直线与A所成的角,连接,易知△为等边三角形,
∴异面直线与所成的角是60°故选C3、B【解题分析】
分析题意可知分针扫过图形是扇形,要求这个扇形的面积需要得到扇形的圆心角和半径,再代入扇形的面积公式计算即可.【题目详解】经过35分钟,分针走了7个大格,每个大格则分钟走过的度数为钟表的分针长为10分针扫过图形的面积是故选【题目点拨】本题主要考查了求扇形面积,结合公式需要求出扇形的圆心角和半径,较为基础4、C【解题分析】
首先比较自变量与的大小,然后利用单调性比较函数值与的大小.【题目详解】因为,函数在区间上是增函数,所以.故选C.【题目点拨】已知函数单调性比较函数值大小,可以借助自变量的大小来比较函数值的大小.5、D【解题分析】
计算可知三棱锥P-ABC的三条侧棱互相垂直,可得球O是以PA为棱的正方体的外接球,球的直径,即可求出球O的体积.【题目详解】在△PAC中,设,,,,因为点E,F分别是PA,AB的中点,所以,在△PAC中,,在△EAC中,,整理得,因为△ABC是边长为的正三角形,所以,又因为∠CEF=90°,所以,所以,所以.又因为△ABC是边长为的正三角形,所以PA,PB,PC两两垂直,则球O是以PA为棱的正方体的外接球,则球的直径,所以外接球O的体积为.故选D.【题目点拨】本题考查了三棱锥的外接球,考查了学生的空间想象能力,属于中档题.6、B【解题分析】
分别解和时条件对应的不等式即可.【题目详解】①当时,,此时,不合题意;②当时,,可化为即,解得.综上,的x的取值范围是.故选:B.【题目点拨】本题考查了分段函数不等式的解法,考查了分类讨论思想,属于基础题.7、C【解题分析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.8、A【解题分析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.9、D【解题分析】
根据正弦定理将已知等式化简得,再根据差角正切公式以及基本不等式可得结论.【题目详解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,当且仅当,即时取等号.故选:D.【题目点拨】本题考查了正弦定理在解三角形中的应用,属于基础题.10、D【解题分析】
由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,an,公差为d,利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出中间一节的容量.【题目详解】由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,a9,公差为d,即=4,=3,∴=4,=3,解得,,∴中间两节的容量,,故选:D.【题目点拨】本题考查等差数列的通项公式,利用等差数列的通项公式列出方程组,解出首项与公差即可,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【题目详解】故答案为:【题目点拨】本题主要考查了三角函数的计算,属于基础题型.12、192【解题分析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为13、50【解题分析】
先计算出招聘后高中数学教师总人数,然后利用比例保持不变,得到该县今年计划招聘的研究生人数.【题目详解】招聘后该县高中数学专科学历的教师比例下降到,则招聘后,该县高中数学教师总人数为,招聘后研究生的比例保持不变,该县今年计划招聘的研究生人数为.【题目点拨】本题主要考查学生的阅读理解能力和分析能力,从题目中提炼关键字眼“比例保持不变”是解题的关键.14、【解题分析】
由已知条件推导出,,由此能求出使前项和成立的最大自然数的值.【题目详解】解:等差数列,首项,,,,.如若不然,,则,而,得,矛盾,故不可能.使前项和成立的最大自然数为.故答案为:.【题目点拨】本题考查等差数列的前项和取最大值时的值的求法,是中档题,解题时要认真审题,注意等差数列的通项公式的合理运用.15、【解题分析】
由周期求出,由图象的所过点的坐标求得,【题目详解】由题意,又,且,∴,,由得或,又,,∴或,或,两根之和为.故答案为:.【题目点拨】本题考查求三角函数的解析式,考查解三角方程.掌握正切函数的性质是解题关键.16、.【解题分析】
利用分层抽样每层抽样比和总体的抽样比相等,列等式求出的值.【题目详解】在分层抽样中,每层抽样比和总体的抽样比相等,则有,解得,故答案为:.【题目点拨】本题考查分层抽样中的相关计算,解题时要充分利用各层抽样比与总体抽样比相等这一条件列等式求解,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)41【解题分析】
(1)根据通项公式先求出公差,再求即可;(2)先表示出,求出的具体值,根据求即可【题目详解】(1)由,,可得,则(2),,则,解得【题目点拨】本题考查等差数列通项公式和前项和公式的用法,属于基础题18、(1)B=60°(2)【解题分析】
(1)由三角形的面积公式,余弦定理化简已知等式可求tanB的值,结合B的范围可求B的值.(2)由正弦定理,三角函数恒等变换的应用可求a+csin(A),由题意可求范围A∈(,),根据正弦函数的图象和性质即可求解.【题目详解】(1)在△ABC中,∵S(a2+c2﹣b2)acsinB,cosB.∴tanB,∵B∈(0,π),∴B.(2)∵B,b,∴由正弦定理可得1,可得:a=sinA,c=sinC,∴a+c=sinA+sinC=sinA+sin(A)=sinAcosAsinAsin(A),∵A∈(0,),A∈(,),∴sin(A)∈(,1],∴a+csin(A)∈(,].【题目点拨】本题考查了正弦定理、余弦定理、三角形面积计算公式及三角函数恒等变换的应用,考查了推理能力与计算能力,属于中档题.19、(Ⅰ)(Ⅱ)【解题分析】
(I)将已知条件转为关于首项和公差的方程组,解方程组求出,进而可求通项公式;(II)由已知可得构成首项为,公差为的等差数列,利用等差数列前n项和公式计算即可.【题目详解】(I)因为是等差数列,,所以解得.则,.(II)构成首项为,公差为的等差数列.则【题目点拨】本题考查等差数列通项公式和前n项和公式的应用,属于基础题.20、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解题分析】
(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【题目详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【题目点拨】本题考查等可能事件、相互独立事件的概率、频率分布直方图的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省潜江市十校联考2025届初三5月底中考模拟考试英语试题含答案
- 江苏省连云港东海县联考2025届初三下化学试题练习题(三)含解析
- 云南省保山一中2025年高三下学期单元检测试题历史试题含解析
- 2025届上海外国语大学附属中学高三3月“阳光校园空中黔课”阶段性检测试题英语试题含解析
- 长沙商贸旅游职业技术学院《植物景观规划设计》2023-2024学年第二学期期末试卷
- 三明医学科技职业学院《放射治疗学》2023-2024学年第二学期期末试卷
- 山西省忻州市宁武县2025年三年级数学第二学期期末检测模拟试题含解析
- 安徽医科大学《特殊儿童医学基础》2023-2024学年第二学期期末试卷
- 郑州医药健康职业学院《病理学实验》2023-2024学年第二学期期末试卷
- 辽宁财贸学院《数据分析与处理》2023-2024学年第一学期期末试卷
- DL-T 2563-2022 分布式能源自动发电控制与自动电压控制系统测试技术规范
- (高清版)TDT 1056-2019 县级国土资源调查生产成本定额
- 肝性脑病的治疗及护理
- 山东省2023年高考物理模拟(一模、二模)试题知识点训练:电磁学(多选题)
- 勇毅前行中国经济行稳致远
- 业务跟单流程课件
- 学生学科学习与跨学科知识的整合与拓展
- 水稻的需肥规律
- 深度学习在图像识别中的应用课件
- 养老护理ppt课件完整版
- 对5S管理成果的记录和展示
评论
0/150
提交评论