2024届上海市黄浦区市级名校数学高一第二学期期末预测试题含解析_第1页
2024届上海市黄浦区市级名校数学高一第二学期期末预测试题含解析_第2页
2024届上海市黄浦区市级名校数学高一第二学期期末预测试题含解析_第3页
2024届上海市黄浦区市级名校数学高一第二学期期末预测试题含解析_第4页
2024届上海市黄浦区市级名校数学高一第二学期期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市黄浦区市级名校数学高一第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,若、、三点共线,则为()A. B. C. D.22.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球3.在△ABC中,若a=2bsinA,则B为A. B. C.或 D.或4.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm5.已知平面向量满足:,,,若,则的值为()A. B. C.1 D.-16.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.20187.已知直线,,若,则()A.2 B. C. D.18.设、满足约束条件,则的最大值为()A. B.C. D.9.如图是某个正方体的平面展开图,,是两条侧面对角线,则在该正方体中,与()A.互相平行 B.异面且互相垂直 C.异面且夹角为 D.相交且夹角为10.在下列区间中,函数的零点所在的区间为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,已知,50为第________项.12.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.13.如图,某人在高出海平面方米的山上P处,测得海平面上航标A在正东方向,俯角为,航标B在南偏东,俯角,且两个航标间的距离为200米,则__________米.14.若存在实数使得关于的不等式恒成立,则实数的取值范围是____.15.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.16.在中,角所对的边分别为,,则____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足若数列满足:(1)求数列的通项公式;(2)求证:是等差数列.18.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.19.已知函数满足且.(1)当时,求的表达式;(2)设,求证:;20.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.21.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由平面向量中的三点共线问题可得:,由基本定理及线性运算可得:即得解.【题目详解】因为,若,,三点共线则,解得,即即即即故选:【题目点拨】本题考查平面向量基本定理和共线定理,属于基础题.2、C【解题分析】

从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.3、C【解题分析】,,则或,选C.4、B【解题分析】

先根据题意确定的值,再由余弦定理可直接求得的值.【题目详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【题目点拨】本题主要考查余弦定理的应用,属于基础题.5、C【解题分析】

将代入,化简得到答案.【题目详解】故答案选C【题目点拨】本题考查了向量的运算,意在考查学生的计算能力.6、A【解题分析】

通过寻找规律以及数列求和,可得,然后计算,可得结果.【题目详解】根据题意可知:则由…可得所以故选:A【题目点拨】本题考查不完全归纳法的应用,本题难点在于找到,属难题,7、D【解题分析】

当为,为,若,则,由此求解即可【题目详解】由题,因为,所以,即,故选:D【题目点拨】本题考查已知直线垂直求参数问题,属于基础题8、C【解题分析】

作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【题目详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【题目点拨】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.9、D【解题分析】

先将平面展开图还原成正方体,再判断求解.【题目详解】将平面展开图还原成正方体如图所示,则B,C两点重合,所以与相交,连接,则为正三角形,所以与的夹角为.故选D.【题目点拨】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.10、B【解题分析】

由函数的解析式,再根据函数零点的存在定理可得函数的零点所在的区间.【题目详解】函数的零点所在的区间即函数与的交点所在区间.由函数与在定义域上只有一个交点,如图.函数在定义域上只有一个零点.又,所以.所以的零点在上故选:B【题目点拨】本题主要考查求函数的零点所在区间,函数零点的存在定理,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解题分析】

方程变为,设,解关于的二次方程可求得。【题目详解】,则,即设,则,有或取得,,所以是第4项。【题目点拨】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。12、【解题分析】

根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【题目详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【题目点拨】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.13、1【解题分析】

根据题意利用方向坐标,根据三角形边角关系,利用余弦定理列方程求出的值.【题目详解】航标在正东方向,俯角为,由题意得,.航标在南偏东,俯角为,则有,.所以,;由余弦定理知,即,可求得(米.故答案为:1.【题目点拨】本题考查方向坐标以及三角形边角关系的应用问题,考查余弦定理应用问题,是中档题.14、【解题分析】

先求得的取值范围,将题目所给不等式转化为含的绝对值不等式,对分成三种情况,结合绝对值不等式的解法和不等式恒成立的思想,求得的取值范围.【题目详解】由于,故可化简得恒成立.当时,显然成立.当时,可得,,可得且,可得,即,解得.当时,可得,可得且,可得,即,解得.综上所述,的取值范围是.【题目点拨】本小题主要考查三角函数的值域,考查含有绝对值不等式恒成立问题,考查存在性问题的求解策略,考查函数的单调性,考查化归与转化的数学思想方法,属于难题.15、【解题分析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【题目详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【题目点拨】本题考查异面直线所成的角,属基础题.16、【解题分析】

利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【题目详解】由正弦定理可得:即:本题正确结果:【题目点拨】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(1)证明见解析【解题分析】

数列满足,变形为,利用等比数列的通项公式即可得出数列满足:,时,,可得,化为:,可得:,相减化简即可证明.【题目详解】(1)数列满足,,数列是等比数列,首项为1,公比为1.,.证明:数列满足:,时,,解得.时,,可得,化为:,可得:,相减可得:,化为:,是等差数列.【题目点拨】本题主要考查了等差数列与等比数列的定义通项公式、指数运算性质、数列递推关系,考查了推理能力与计算能力,属于中档题.18、(1),(2)【解题分析】

(1)先根据成等比数列,可求出公差,即得的通项公式;根据可得的通项公式;(2)由(1)可得的通项公式,用错位相减法计算它的前n项和,即得。【题目详解】(1)由题得,,设数列的公差为,则有,解得,那么等差数列的通项公式为;数列的前项和为,且满足,当时,,可得,当时,可得,整理得,数列是等比数列,通项公式为.(2)由题得,,前n项和,,两式相减可得,整理化简得.【题目点拨】本题考查等比数列的性质,以及用错位相减法求数列的前n项和,对计算能力有一定要求。19、(1);(2)详见解析.【解题分析】

(1)令,将函数表示为等比数列,根据等比数列公式得到答案.(2)将表示出来,利用错位相减法得到前N项和,最后证明不等式.【题目详解】(1)令,得,∴,即(2),设,则,①,②来①-②得,【题目点拨】本题考查了函数与数列的关系,错位相减法,综合性强,意在考查学生的计算能力和综合应用能力.20、(1);(2)【解题分析】

(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的1换成a,达到齐次化的目的,再用正余弦定理解决;(2)已知∠A,要求△ABC的面积,可用公式,因此把问题转化为求bc的最大值.【题目详解】(1)因为(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因为b2+c2-a2=bc,所以bc=b2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论