江西省吉安市吉水县二中2024届数学高一下期末复习检测试题含解析_第1页
江西省吉安市吉水县二中2024届数学高一下期末复习检测试题含解析_第2页
江西省吉安市吉水县二中2024届数学高一下期末复习检测试题含解析_第3页
江西省吉安市吉水县二中2024届数学高一下期末复习检测试题含解析_第4页
江西省吉安市吉水县二中2024届数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市吉水县二中2024届数学高一下期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形2.在等差数列中,,则等于()A.2 B.18 C.4 D.93.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.84.在中,,,,则的面积是().A. B. C.或 D.或5.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值6.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.7.在中,若,,,则等于()A.3 B.4 C.5 D.68.经过点,和直线相切,且圆心在直线上的圆方程为()A. B.C. D.9.已知、是球的球面上的两点,,点为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为()A. B. C. D.10.用区间表示不超过的最大整数,如,设,若方程有且只有3个实数根,则正实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若为锐角,,则__________.12.若直线平分圆,则的值为________.13.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,下列四个命题正确的是________.①若l⊥β,则α⊥β;②若α⊥β,则l⊥m;③若l∥β,则α∥β;④若α∥β,则l∥m.14.函数的定义域为__________;15.等差数列,的前项和分别为,,且,则______.16.下列结论中:①②函数的图像关于点对称③函数的图像的一条对称轴为④其中正确的结论序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.18.已知,,,求:的值.19.设函数,其中,.(1)求的周期及单调递减区间;(2)若关于的不等式在上有解,求实数的取值范围.20.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.21.某商场有奖销售中,购满100元商品得1张奖券,多购多得,100张奖券为一个开奖单位,每个开奖单位设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,可知其概率平分别为.(1)求1张奖券中奖的概率;(2)求1张奖券不中特等奖且不中一等奖的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【题目详解】解:为非零实数),可得:,由正弦定理,可得:,对于A,时,可得:,可得,即为直角,可得是直角三角形,故正确;对于B,时,可得:,可得为最大角,由余弦定理可得,可得是锐角三角形,故正确;对于C,时,可得:,可得为最大角,由余弦定理可得,可得是钝角三角形,故正确;对于D,时,可得:,可得,这样的三角形不存在,故错误.故选:D.【题目点拨】本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想,属于基础题.2、D【解题分析】

利用等差数列性质得到,,计算得到答案.【题目详解】等差数列中,故选:D【题目点拨】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.3、A【解题分析】

由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【题目详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【题目点拨】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4、C【解题分析】,∴,或.()当时,.∴.()当时,.∴.故选.5、C【解题分析】

设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【题目详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【题目点拨】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.6、B【解题分析】

由平行线间的距离公式求出圆的直径,然后设出圆心,由点到两条切线的距离都等于半径,求出,即可求得圆的方程.【题目详解】因为两条直线与平行,所以它们之间的距离即为圆的直径,所以,所以.设圆心坐标为,则点到两条切线的距离都等于半径,所以,,解得,故圆心为,所以圆的标准方程为.故选:.【题目点拨】本题主要考查求解圆的方程,同时又进一步考查了直线与圆的位置关系,圆的切线性质等.本题也注重考查审题能力,分析问题和解决问题的能力.难度较易.7、D【解题分析】

直接运用正弦定理求解即可.【题目详解】由正弦定理可知中:,故本题选D.【题目点拨】本题考查了正弦定理的应用,考查了数学运算能力.8、B【解题分析】

设出圆心坐标,由圆心到切线的距离和它到点的距离都是半径可求解.【题目详解】由题意设圆心为,则,解得,即圆心为,半径为.圆方程为.故选:B.【题目点拨】本题考查求圆的标准方程,考查直线与圆的位置关系.求出圆心坐标与半径是求圆标准方程的基本方法.9、A【解题分析】

当点位于垂直于面的直径端点时,三棱锥的体积最大,利用三棱锥体积的最大值为,求出半径,即可求出球的表面积.【题目详解】如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,.因此,球的表面积为.故选:A.【题目点拨】本题考查球的半径与表面积的计算,确定点的位置是关键,考查分析问题和解决问题的能力,属于中等题.10、A【解题分析】

由方程的根与函数交点的个数问题,结合数形结合的数学思想方法,作图观察y={x}的图象与y=﹣kx+1的图象有且只有3个交点时k的取值范围,即可得解.【题目详解】方程{x}+kx﹣1=0有且只有3个实数根等价于y={x}的图象与y=﹣kx+1的图象有且只有3个交点,当0≤x<1时,{x}=x,当1≤x<2时,{x}=x﹣1,当2≤x<3时,{x}=x﹣2,当3≤x<4时,{x}=x﹣3,以此类推如上图所示,实数k的取值范围为:k,即实数k的取值范围为:(,],故选A.【题目点拨】本题考查了方程的根与函数交点的个数问题,数形结合的数学思想方法,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为为锐角,,所以,.12、1【解题分析】

把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【题目详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【题目点拨】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题13、①【解题分析】

由线面的平行垂直的判定和性质一一检验即可得解.【题目详解】由平面与平面垂直的判定可知,①正确;②中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;③中,l∥β时,α,β可以相交;④中,α∥β时,l,m也可以异面.故答案为①.【题目点拨】本题主要考查了线面、面面的垂直和平行位置关系的判定和性质,属于基础题.14、【解题分析】

根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【题目详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【题目点拨】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.15、【解题分析】

取,代入计算得到答案.【题目详解】,当时故答案为【题目点拨】本题考查了前项和和通项的关系,取是解题的关键.16、①③④【解题分析】

由两角和的正切公式的变形,化简可得所求值,可判断①正确;由正切函数的对称中心可判断②错误;由余弦函数的对称轴特点可判断③正确;由同角三角函数基本关系式和辅助角公式、二倍角公式和诱导公式,化简可得所求值,可判断④正确.【题目详解】①,故①正确;②函数的对称中心为,,则图象不关于点对称,故②错误;③函数,由为最小值,可得图象的一条对称轴为,故③正确;④,故④正确.【题目点拨】本题主要考查三角函数的图象和性质应用以及三角函数的恒等变换,意在考查学生的化简运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)是等比数列,详见解析(3)答案不唯一,具体见解析【解题分析】

(1)由即可证明;(2)证明即可(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,讨论和分组求和即可【题目详解】(1)因为,且是以q为公比的等比数列,所以,则,所以.(2)是等比数列因为;所以,又所以是以5为首项,为公比的等比数列.(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,所以当时,,当时.【题目点拨】本题考查等比数列的证明,分组求和,考查推理计算及分类讨论思想,是中档题18、【解题分析】

求出和的取值范围,利用同角三角函数的基本关系求出和的值,然后利用两角差的余弦公式可求出的值.【题目详解】,则,且,,,,,,,因此,.故答案为:.【题目点拨】本题考查利用两角差的余弦公式求值,解题的关键就是利用已知角来表示所求角,考查计算能力,属于中等题.19、(1),;(2)【解题分析】

(1)利用坐标形式下向量的数量积运算以及二倍角公式、辅助角公式将化简为的形式,根据周期计算公式以及单调性求解公式即可得到结果;(2)分析在的值域,根据能成立的思想得到与满足的不等关系,求解出的范围即可.【题目详解】(1)∵,∴,∴的周期为,令,则,的单调递减区间为(2)∵,∴,在上递增,在上递减,且,∴,∴,即,若在上有解,则故:,解得.【题目点拨】本题考查向量与三角函函数的综合应用,其中着重考查了使用三角恒等变换进行化简以及利用正弦函数的性质分析值域从而求解参数范围,对于转化与计算的能力要求较高,难度一般.20、(1);(2)存在,.【解题分析】

(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【题目详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【题目点拨】本题考查了数列通项的求法,以及不等式恒成立的问题,不等式恒成立是一个难点,也是高考中的常考点,本题属于较难的题。21、(1)(2)【解题分析】

(1)1张奖券中奖包括中特等奖、一等奖、二等奖,且、、两两互斥,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论