版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂东南五校一体联盟联考2024届高一数学第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为A.; B.C. D.2.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.43.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.4.已知三棱锥中,,,则三棱锥的外接球的表面积为()A. B.4 C. D.5.已知变量和满足相关关系,变量和满足相关关系.下列结论中正确的是()A.与正相关,与正相关 B.与正相关,与负相关C.与负相关,与y正相关 D.与负相关,与负相关6.如图,两点为山脚下两处水平地面上的观测点,在两处观察点观察山顶点的仰角分别为,若,,且观察点之间的距离比山的高度多100米,则山的高度为()A.100米 B.110米 C.120米 D.130米7.若实数,满足不等式组则的最大值为()A. B.2 C.5 D.78.在中,,则是()A.等边三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形9.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.110.已知中,,,为边上的中点,则()A.0 B.25 C.50 D.100二、填空题:本大题共6小题,每小题5分,共30分。11.设是数列的前项和,且,,则__________.12.在中,,点在边上,若,的面积为,则___________13.已知圆锥的表面积等于,其侧面展开图是一个半圆,则底面圆的半径为__________.14.函数是定义域为R的奇函数,当时,则的表达式为________.15.在中,,则______.16.已知直线l与圆C:交于A,B两点,,则满足条件的一条直线l的方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)设,求满足的实数的值;(2)若为上的奇函数,试求函数的反函数.18.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.组数第l组第2组第3组第4组第5组分组频数203630104(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.19.已知等差数列an满足a3=5,a6=a4(1)求数列an,b(2)设cn=anbn220.为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;(2)设、、、四名学生的考试成绩在区间内,、两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生、至少有一人被选中的概率.21.已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.(1)求数列和的通项公式;(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.2、C【解题分析】
先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【题目详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【题目点拨】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.3、A【解题分析】
设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【题目详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【题目点拨】本题考查球的体积,关键是确定球心位置求出球的半径.4、B【解题分析】
依据题中数据,利用勾股定理可判断出从而可得三棱锥各面都为直角三角形,进而可知外接圆的直径,即可求出三棱锥的外接球的表面积【题目详解】如图,因为,又,,从而可得三棱锥各面都为直角三角形,CD是三棱锥的外接球的直径,在中,,,即,,故选B.【题目点拨】本题主要考查学生空间想象以及数学建模能力,能够依据条件建立合适的模型是解题的关键.5、B【解题分析】
根据相关关系式,由一次项系数的符号即可判断是正相关还是负相关.【题目详解】变量和满足相关关系,由可知变量和为正相关变量和满足相关关系,由,可知变量和为负相关所以B为正确选项故选:B【题目点拨】本题考查了通过相关关系式子判断正负相关性,属于基础题.6、A【解题分析】
设山的高度为,求出AB=2x,根据,求出山的高度.【题目详解】设山的高度为,如图,由,有.在中,,有,又由观察点之间的距离比山的高度多100,有.故山的高度为100.故选A【题目点拨】本题主要考查解三角形的实际应用,意在考查学生对该知识的理解掌握水平,属于基础题.7、C【解题分析】
利用线性规划数形结合分析解答.【题目详解】由约束条件,作出可行域如图:由得A(3,-2).由,化为,由图可知,当直线过点时,直线在轴上的截距最小,有最大值为5.故选C.【题目点拨】本题主要考查利用线性规划求最值,意在考查学生对该知识的理解掌握水平,属于基础题.8、C【解题分析】
由二倍角公式可得,,再根据诱导公式可得,然后利用两角和与差的余弦公式,即可将化简成,所以,即可求得答案.【题目详解】因为,,所以,,即,.故选:C.【题目点拨】本题主要考查利用二倍角公式,两角和与差的余弦公式进行三角恒等变换,意在考查学生的数学运算能力,属于基础题.9、B【解题分析】
由几何概型中的角度型得:P(A)=2π【题目详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【题目点拨】本题考查了几何概型中的角度型,属于基础题.10、C【解题分析】
三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【题目详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【题目点拨】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【题目点拨】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.12、【解题分析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【题目详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【题目点拨】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.13、【解题分析】
设出底面圆的半径,用半径表示出圆锥的母线,再利用表面积,解出半径。【题目详解】设圆锥的底面圆的半径为,母线为,则底面圆面积为,周长为,则解得故填2【题目点拨】本题考查根据圆锥的表面积求底面圆半径,属于基础题。14、【解题分析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性15、【解题分析】
由已知求得,进一步求得,即可求出.【题目详解】由,得,即,,则,,,则.【题目点拨】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.16、(答案不唯一)【解题分析】
确定圆心到直线的距离,即可求直线的方程.【题目详解】由题意得圆心坐标,半径,,∴圆心到直线的距离为,∴满足条件的一条直线的方程为.故答案为:(答案不唯一).【题目点拨】本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)把代入函数解析式,代入方程即可求解.(2)由函数奇偶性得,然后求得的解析式,分段求解反函数即可.【题目详解】(1)当时,,由,得,即,解得.(2)为上的奇函数,,则.,由,,得,;由,,得,.函数的反函数为.【题目点拨】本题主要考查了函数的解析式及求法,考查了反函数的求法,属于中档题.18、(1);(2)第1组2人,第3组3人,第4组1人;(3)【解题分析】
(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.【题目详解】解:(1)由题意可知,,(2)第1,3,4组共有60人,所以抽取的比例是则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为;(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:,,,,,,,,,,,,,,共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有,,,共4个基本事件,所以抽取的2人来自同一个组的概率.【题目点拨】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力.19、(1)an=2n-1,【解题分析】
(1)利用等差数列、等比数列的通项公式即可求得;(2)由(1)知,cn=anbn2【题目详解】(1)设等差数列an的公差为d,等比数列bn的公比为因为a6=a4+4所以an由b3b5又显然b4必与b2同号,所以所以q2=b所以bn(2)由(1)知,cn则Tn12①-②,得1=1+1-所以Tn【题目点拨】用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20、(1);(2).【解题分析】
(1)由频率分布直方图能求出a.由此能估计该市高中学生的平均成绩;(2)现从这6名学生中任选两人参加座谈会,求出基本事件总数,再学生M、N至少有一人被选中包含的基本事件个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年履带式起重机公司技术改造及扩产项目可行性研究报告
- 2024-2030年国家甲级资质:中国肥料营养融资商业计划书
- 2024年人教版PEP第二册生物下册阶段测试试卷448
- 狗肉火锅教学课程设计
- 瑜伽小球编排课程设计
- 2024年版摄像头购销独家合同版
- 2024年煤矿生产劳动雇佣合同
- 2024年度招标投标廉洁承诺书编制指南9篇
- 2025年高考数学复习热搜题速递之空间向量与立体几何(2024年7月)
- 2024年浙教版选修1历史上册月考试卷含答案538
- 创意写作与文学欣赏
- 糖果行业大数据分析-洞察分析
- 名画中的瘟疫史知到智慧树章节测试课后答案2024年秋上海健康医学院
- 高空伐树作业施工方案
- 新媒体用户行为研究-洞察分析
- 新建二级加油站项目投资立项可行性分析报告
- 湖北省荆门市(2024年-2025年小学六年级语文)统编版质量测试(上学期)试卷及答案
- 2025版国家开放大学法学本科《知识产权法》期末纸质考试总题库
- 剪辑师的职业规划
- 土木工程CAD-终结性考核-国开(SC)-参考资料
- 2022-2023学年北京市海淀区七年级(上)期末语文试卷
评论
0/150
提交评论