版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省东莞市达标名校高一数学第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某高级中学共有学生3000人,其中高二年级有学生800人,高三年级有学生1200人,为了调查学生的课外阅读时长,现用分层抽样的方法从所有学生中抽取75人进行问卷调查,则高一年级被抽取的人数为()A.20 B.25 C.30 D.352.直线被圆截得的劣弧与优弧的长之比是()A. B. C. D.3.如右图所示,直线的斜率分别为则A. B.C. D.4.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.5.设a,b,c为的内角所对的边,若,且,那么外接圆的半径为A.1 B. C.2 D.46.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值7.在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是()A.①③ B.②④ C.①④ D.②③8.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN//AB B.平面VAC⊥平面VBCC.MN与BC所成的角为45° D.OC⊥平面VAC9.已知等差数列的首项,公差,则()A.5 B.7 C.9 D.1110.设是复数,从,,,,,,中选取若干对象组成集合,则这样的集合最多有()A.3个元素 B.4个元素 C.5个元素 D.6个元素二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,的夹角为,若,,则________.12.已知,且,则的取值范围是____________.13.函数f(x)=2cos(x)﹣1的对称轴为_____,最小值为_____.14.在中,角的对边分别为,若,则_______.(仅用边表示)15.过点直线与轴的正半轴,轴的正半轴分别交于、两点,为坐标原点,当最小时,直线的一般方程为______.16.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求数列{an}的通项公式:(2)若对任意的n∈N*,不等式1≤man≤5恒成立,求实数m的取值范围.18.已知,,当为何值时:(1)与垂直;(2)与平行.19.已知函数的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间上的最大值和最小值,并指出取得最值时的的值.20.(1)从2,3,8,9中任取两个不同的数字,分别记为,求为整数的概率?(2)两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?21.已知函数.(1)求的单调递增区间;(2)求在区间的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
通过计算三个年级的人数比例,于是可得答案.【题目详解】抽取比例为753000=140,高一年级有【题目点拨】本题主要考查分层抽样的相关计算,难度很小.2、A【解题分析】
计算出圆心到直线的距离,根据垂径定理,结合锐角三角函数关系,可以求出劣弧所对的圆心角的度数,根据弧度制的定义,这样就可以求出劣弧与优弧的长之比.【题目详解】圆心O到直线的距离为:,直线被圆截得的弦为AB,弦AB所对的圆心角为,弦AB的中点为C,由垂径定理可知:,所以,劣弧与优弧的长之比为:,故本题选A.【题目点拨】本题考查了圆的垂径定理、点到直线距离公式、弧长公式,考查了数学运算能力.3、C【解题分析】试题分析:由图可知,,所以,故选C.考点:直线的斜率.4、C【解题分析】
可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【题目详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【题目点拨】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.5、A【解题分析】
由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【题目详解】∵,∴,整理得b2+c2-a2=bc,根据余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故选A【题目点拨】已知三边关系,可转化为接近余弦定理的形式,直接运用余弦定理理解三角形,注意整体代入思想.6、D【解题分析】
根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【题目详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【题目点拨】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.7、B【解题分析】
说法①:可以根据线面平行的判定理判断出本说法是否正确;说法②:根据线面垂直的性质和面面平行的判定定理可以判断出本说法是否正确;说法③:当与相交时,是否在平面内有不共线的三点到平面的距离相等,进行判断;说法④:可以通过反证法进行判断.【题目详解】①平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知②正确;③若平面内有不共线的三点到平面的距离相等,则与可能平行,也可能相交,不正确;易知④正确.故选B.【题目点拨】本题考查了线线位置关系、面面位置关系的判断,分类讨论是解题的关键,反证法是经常用到的方程.8、B【解题分析】
对每一个选项逐一分析判断得解.【题目详解】A.∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;∵MN//AC,AC∩AB=A,∴MN//AB不成立,故A不正确.B.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,∵VA垂直⊙O所在的平面,BC⊂⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC⊂平面VBC,∴平面VAC⊥平面VBC,故B正确;C.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故B不正确;∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;D.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故D不正确.故选B.【题目点拨】本题主要考查空间位置关系的证明,考查异面直线所成的角的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解题分析】
直接利用等差数列的通项公式,即可得到本题答案.【题目详解】由为等差数列,且首项,公差,得.故选:C【题目点拨】本题主要考查利用等差数列的通项公式求值,属基础题.10、A【解题分析】
设复数分别计算出以上式子,根据集合的元素互异性,可判断答案.【题目详解】解:设复数,,,,故由以上的数组成的集合最多有,,这个元素,故选:【题目点拨】本题考查复数的运算及相关概念,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由,展开后进行计算,得到的值,从而得到答案.【题目详解】因为向量,的夹角为,若,,所以,所以.故答案为:.【题目点拨】本题考查求向量的模长,向量的数量积运算,属于简单题.12、【解题分析】
利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【题目详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【题目点拨】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.13、﹣3【解题分析】
利用余弦函数的图象的对称性,余弦函数的最值,求得结论.【题目详解】解:对于函数,令,求得,根据余弦函数的值域可得函数的最小值为,故答案为:;.【题目点拨】本题主要考查余弦函数的图象的对称性,余弦函数的最值,属于基础题.14、【解题分析】
直接利用正弦定理和三角函数关系式的变换的应用求出结果.【题目详解】由正弦定理,结合可得,即,即,从而.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算能力和转换能力,属于基础题型.15、【解题分析】
设直线的截距式方程为,利用该直线过可得,再利用基本不等式可求何时即取最小值,从而得到相应的直线方程.【题目详解】设直线的截距式方程为,其中且.因为直线过,故.所以,由基本不等式可知,当且仅当时等号成立,故当取最小值时,直线方程为:.填.【题目点拨】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式,特别地,如果考虑的问题是与直线、坐标轴围成的直角三角形有关的问题,可考虑利用截距式.16、262【解题分析】
根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【题目详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【题目点拨】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解题分析】
(1)由已知,根据递推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基础之上解不等式可得实数的取值范围.【题目详解】(1)由已知,根据递推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,当n≥2时,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2时,an=11+2×(1﹣()n﹣1),又a1=1也满足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因为3﹣2()n﹣1>0,所以,当n为奇数时,3﹣2()n﹣1∈[1,3);当n为偶数时,3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值为4,最小值为1.对于任意的正整数n都有成立,所以1≤m.即所求实数m的取值范围是{m|1≤m}.【题目点拨】本题主要考查数列的递推公式知识和不等式的相关知识,式子繁琐,易错,属于中档题.18、(1);(2)【解题分析】
根据向量坐标运算计算得到与的坐标(1)由垂直关系得到数量积为,可构造方程求得;(2)由向量平行的坐标表示可构造方程求得.【题目详解】,(1)由与垂直得:,解得:(2)由与平行得:,解得:【题目点拨】本题考查平面向量平行和垂直的坐标表示;关键是能够明确两向量垂直可得;两向量平行可得.19、(1)函数的解析式为,其振幅是2,初相是(2)时,函数取得最大值0;时,函数取得最小值勤-2【解题分析】
(1)根据图像写出,由周期求出,再由点确定的值.(2)根据的取值范围确定的取值范围,再由的单调求出最值【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《正比例和反比例》课件
- 美容院与艺人2025年度形象代言合作协议4篇
- 2025年度公路路面混凝土检测与维修合同范本3篇
- 二零二五年度购物中心街面商铺租赁合同样本2篇
- 基于2025年度数据的房地产市场分析报告合同3篇
- 二零二五年度大棚设施租赁与农业旅游项目承包协议4篇
- 2025年度土地储备及土地开发权转让合同4篇
- 二零二五年度汽车行业软件销售与智能驾驶技术合同
- 2025年度成人高等教育代理招生授权合同4篇
- 二零二五年度高空作业安全责任门卫聘用协议3篇
- 高二物理竞赛霍尔效应 课件
- 金融数学-(南京大学)
- 基于核心素养下的英语写作能力的培养策略
- 现场安全文明施工考核评分表
- 亚什兰版胶衣操作指南
- 四年级上册数学教案 6.1口算除法 人教版
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
- 6.农业产值与增加值核算统计报表制度(2020年)
- 人工挖孔桩施工监测监控措施
- 供应商物料质量问题赔偿协议(终端)
- 物理人教版(2019)必修第二册5.2运动的合成与分解(共19张ppt)
评论
0/150
提交评论