版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蒙城县一中2024届高一数学第二学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,且为正实数,若满足,则的最小值为()A. B. C. D.2.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.643.如图,某人在点处测得某塔在南偏西的方向上,塔顶仰角为,此人沿正南方向前进30米到达处,测得塔顶的仰角为,则塔高为()A.20米 B.15米 C.12米 D.10米4.已知实数满足约束条件,则目标函数的最小值为()A. B. C.1 D.55.已知,那么()A. B. C. D.6.直线与、为端点的线段有公共点,则k的取值范围是()A. B.C. D.7.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.8.在中,已知,则等于()A. B.C.或 D.或9.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.10.等差数列中,,,下列结论错误的是()A.,,成等比数列 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,那么__________.12.在中,若,则____________.13.函数y=tan14.若,且,则是第_______象限角.15.已知,,且,若恒成立,则实数的取值范围是____.16.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C的对边分别为a,b,c,已知.(1)求角B的大小;(2)若,,求的面积.18.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.19.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(三条边,是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口是的中点,分别落在线段上,已知米,米,记.(1)试将污水净化管道的总长度(即的周长)表示为的函数,并求出定义域;(2)问取何值时,污水净化效果最好?并求出此时管道的总长度.20.已知直角梯形中,,,,,,过作,垂足为,分别为的中点,现将沿折叠,使得.(1)求证:(2)在线段上找一点,使得,并说明理由.21.设向量,,令函数,若函数的部分图象如图所示,且点的坐标为.(1)求点的坐标;(2)求函数的单调增区间及对称轴方程;(3)若把方程的正实根从小到大依次排列为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
根据向量的数量积结合基本不等式即可.【题目详解】由题意得,因为,为正实数,则当且仅当时取等.所以选择A【题目点拨】本题主要考查了向量的数量积以及基本不等式,在用基本不等式时要满足一正二定三相等.属于中等题2、A【解题分析】
分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.3、B【解题分析】
设塔底为,塔高为,根据已知条件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【题目详解】设塔底为,塔高为,故,由于,所以在三角形中,由余弦定理得,解得米.故选B.【题目点拨】本小题主要考查利用余弦定理解三角形,考查空间想象能力,属于基础题.4、A【解题分析】
作出不等式组表示的平面区域,再观察图像即可得解.【题目详解】解:先作出不等式组表示的平面区域,如图所示,由图可知目标函数所对应的直线过点时目标函数取最小值,则,故选:A.【题目点拨】本题考查了简单的线性规划问题,重点考查了数形结合的数学思想方法,属基础题.5、A【解题分析】依题意有,故6、D【解题分析】
由直线方程可得直线恒过点,利用两点连线斜率公式可求得临界值和,从而求得结果.【题目详解】直线恒过点则,本题正确选项:【题目点拨】本题考查利用直线与线段有交点确定直线斜率取值范围的问题,关键是能够确定直线恒过的定点,从而找到直线与线段有交点的临界状态.7、B【解题分析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.8、C【解题分析】在中,已知,由余弦定理,即,解得或,又,或,故选C.9、A【解题分析】
根据各选择项求出数列的首项,第二项,用排除法确定.【题目详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【题目点拨】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.10、C【解题分析】
根据条件得到公差,然后得到等差数列的通项,从而对四个选项进行判断,得到答案.【题目详解】等差数列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比数列,故A选项正确,,故B选项正确,,故C选项错误,,故D选项正确.故选:C.【题目点拨】本题考查求等差数列的项,等差数列求前项的和,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、2017【解题分析】,故,由此得.【题目点拨】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.12、2【解题分析】
根据正弦定理角化边可得答案.【题目详解】由正弦定理可得.故答案为:2【题目点拨】本题考查了正弦定理角化边,属于基础题.13、{【解题分析】
解方程12【题目详解】由题得12x+故答案为{x|x≠2kπ+【题目点拨】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.14、三【解题分析】
利用二倍角公式计算出的值,结合判断出角所在的象限.【题目详解】由二倍角公式得,又,因此,是第三象限角,故答案为三.【题目点拨】本题考查利用三角函数值的符号与角的象限之间的关系,考查了二倍角公式,对于角的象限与三角函数值符号之间的关系,充分利用“一全二正弦、三切四余弦”的规律来判断,考查分析问题与解决问题的能力,属于中等题.15、(-4,2)【解题分析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值16、【解题分析】
根据题意先得出,再画图.【题目详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【题目点拨】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)先利用正弦定理将已知等式化为,化简后再运用余弦定理可得角B;(2)由和余弦定理可得,面积为,将和的值代入面积公式即可.【题目详解】解:(1)由题,由正弦定理得:,即则所以.(2)因为,所以,解得所以【题目点拨】本题考查解三角形,是常考题型.18、(1);(2).【解题分析】
(1)设正项等比数列的公比为q(q>0),由已知列式求得公比,则等比数列的通项公式可求;(2)由,求解等差数列的公差,则数列的前n项和可求.【题目详解】(1)设正项等比数列的公比为q(q>0),由,得,则q=3.;(2)设等差数列的公差为d,由,得,∴d=3.∴数列的前n项和【题目点拨】本题主要考查等差数列的通项公式与求和公式,考查了等比数列的通项公式,意在考查综合应用所学知识解答问题的能力,属于中档题.19、(1),;(2)或时,L取得最大值为米..【解题分析】
(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水净化管道的长度L的函数解析式,并注明θ的范围.(2)设sinθ+cosθ=t,根据函数L=在[,]上是单调减函数,可求得L的最大值.所以当时,即
或
时,L取得最大值为米.【题目详解】由题意可得,,,由于
,,所以,,,即,设,则,由于,由于在上是单调减函数,当时,即或时,L取得最大值为米.【题目点拨】三角函数值域得不同求法:1.利用和的值域直接求2.把所有的三角函数式变换成的形式求值域3.通过换元,转化成其他类型函数求值域20、(1)见解析(2)【解题分析】试题分析:(Ⅰ)由已知得:面面;(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下先计算再求得,
,再证面面面.试题解析:(Ⅰ)由已知得:面面
(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下:取中点,连接
容易计算在中∵可知,
∴在中,
又在中,为中点面,
∴面面.21、(1)(2)单调递增区间为;对称轴方程为,;(3)14800【解题分析】
(1)先求出,令求出点B的坐标;(2)利用复合函数的单调性原理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电梯机房管理规章
- 名著阅读《红星照耀中国》-八年级语文上册同步备课精讲(统编版)
- 西京学院《信息检索导论》2023-2024学年第一学期期末试卷
- 西京学院《商务应用文写作》2022-2023学年第一学期期末试卷
- 人教版五年级上册第11课新型玻璃
- 西京学院《机电一体化系统设计》2021-2022学年期末试卷
- 幼儿园小班儿歌《晒太阳》课件
- 西华师范大学《组织行为学》2022-2023学年第一学期期末试卷
- 人教版初中课件
- 西华师范大学《小学课程设计与评价》2023-2024学年第一学期期末试卷
- 2024年品牌营销全案策划合同
- 2023年湖南长沙环境保护职业技术学院专任教师招聘考试真题
- 河北省石家庄市2024年七年级上学期期中数学试题【附答案】
- 第七章 立体几何与空间向量综合测试卷(新高考专用)(教师版) 2025年高考数学一轮复习专练(新高考专用)
- 《算法设计与分析基础》(Python语言描述) 课件 第8章动态规划1
- 生产流程(线)外包服务规范 -DB13-T 5224-2020 河北
- 部编人教版道德与法治一年级上册:6校园里的号令教学设计(2课时)
- 2021人音版小学音乐六年级上册课程纲要
- 三秦思语(2022年陕西中考语文试卷散文阅读题及答案)
- 2024年秋新外研版(三起)英语三年级上册全册教案(2024年新教材)
- 抽水蓄能电站辅助洞室工程施工组织设计
评论
0/150
提交评论