2024届襄阳市第四中学数学高一下期末达标检测模拟试题含解析_第1页
2024届襄阳市第四中学数学高一下期末达标检测模拟试题含解析_第2页
2024届襄阳市第四中学数学高一下期末达标检测模拟试题含解析_第3页
2024届襄阳市第四中学数学高一下期末达标检测模拟试题含解析_第4页
2024届襄阳市第四中学数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届襄阳市第四中学数学高一下期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是圆上的三点,()A. B. C. D.2.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形3.己知ΔABC中,角A,B,C所对的边分別是a,b,c.若A=45°,B=30°,a=2,则bA.3-1 B.1 C.2 D.4.函数在区间(,)内的图象是()A. B. C. D.5.在等差数列an中,若a3+A.6 B.7 C.8 D.96.若,则下列不等式成立的是A. B. C. D.7.在中,,,为的外接圆的圆心,则()A. B.C. D.8.在等比数列中,若,则()A.3 B. C.9 D.139.设,且,则下列各不等式中恒成立的是()A. B. C. D.10.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件 B.B+C与D不是互斥事件,但是对立事件C.A+C与B+D是互斥事件,但不是对立事件 D.B+C+D与A是互斥事件,也是对立事件二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_________.12.已知,则的最小值为__________.13.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.14.化简:________15.已知数列的前n项和,则___________.16.已知向量a=(2,-4),b=(-3,-4),则向量a与三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,.(1)若,求的值;(2)若,,求的值.18.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.19.已知函数f(x)=3sin(2x+π3)-4cos(1)求函数g(x)的解析式;(2)求函数g(x)在[π20.为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人员抽取人数A18B362C54(1)求,;(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.21.已知点,圆.(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

先由等式,得出,并计算出,以及与的夹角为,然后利用平面向量数量积的定义可计算出的值.【题目详解】由于是圆上的三点,,则,,故选C.【题目点拨】本题考查平面向量的数量积的计算,解题的关键就是要确定向量的模和夹角,考查计算能力,属于中等题.2、A【解题分析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.3、B【解题分析】

由正弦定理可得.【题目详解】∵asinA=故选B.【题目点拨】本题考查正弦定理,解题时直接应用正弦定理可解题,本题属于基础题.4、D【解题分析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.5、C【解题分析】

通过等差数列的性质可得答案.【题目详解】因为a3+a9=17【题目点拨】本题主要考查等差数列的性质,难度不大.6、C【解题分析】

利用的单调性直接判断即可。【题目详解】因为在上递增,又,所以成立。故选:C【题目点拨】本题主要考查了幂函数的单调性,属于基础题。7、A【解题分析】

利用正弦定理可求出的外接圆半径.【题目详解】由正弦定理可得,因此,,故选A.【题目点拨】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.8、A【解题分析】

根据等比数列性质即可得解.【题目详解】在等比数列中,,,所以,所以,.故选:A【题目点拨】此题考查等比数列的性质,根据性质求数列中的项的关系,关键在于熟练掌握相关性质,准确计算.9、D【解题分析】

根据不等式的性质,逐项检验,即可判断结果.【题目详解】对于选项A,若,显然不成立;对于选项B,若,显然不成立;对于选项C,若,显然不成立;对于选项D,因为,所以,故正确.故选:D.【题目点拨】本题考查了不等式的性质,属于基础题.10、D【解题分析】

不可能同时发生的事件为互斥事件,当两个互斥事件的概率和为1,则两个事件为对立事件,易得答案.【题目详解】因为事件彼此互斥,所以与是互斥事件,因为,,,所以与是对立事件,故选D.【题目点拨】本题考查互斥事件、对立事件的概念,注意对立事件一定是互斥事件,而互斥事件不一定是对立事件.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在.12、【解题分析】

根据均值不等式即可求出的最小值.【题目详解】因为所以,根据均值不等式可得:当且仅当,即时等号成立.【题目点拨】本题主要考查了均值不等式,属于中档题.13、【解题分析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力14、【解题分析】

根据三角函数的诱导公式,准确运算,即可求解.【题目详解】由题意,可得.故答案为:.【题目点拨】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.15、17【解题分析】

根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【题目详解】数列的前n项和,则,而,,所以,则,故答案为:.【题目点拨】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.16、5【解题分析】

先求出a⋅b,再求【题目详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【题目点拨】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解题分析】

(1)根据向量平行的坐标公式得出,利用二倍角公式以及弦化切即可得出答案;(2)利用向量的模长公式得出,由二倍角公式以及降幂公式,辅助角公式得出,结合正弦函数的性质得出的值.【题目详解】(1)由,得,所以.所以.(2)由,得所以,所以,所以.因为,所以,所以或解得或.【题目点拨】本题主要考查了由向量平行求参数,模长公式,简单的三角恒等变换以及正弦函数的性质的应用,属于中档题.18、(1),(2),,(3)【解题分析】

(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)由,求解不等式即可得解.【题目详解】解:(1)因为函数图象过点,所以,即.因为,所以.(2)由(1)得,所以当,,即,时,是增函数,故的单调递增区间为,.(3)由,得,所以,,即,,所以时,x的集合为.【题目点拨】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.19、(1)g(x)=sin【解题分析】

(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数的解析式确定函数的最大值即可.【题目详解】(1)f(x)==3(sin2xcos=3由题意得g(x)=sin[2(x+π化简得g(x)=sin(2x+π(2)∵π12可得π3∴-1当x=π6时,函数当x=π2时,函数g(x)有最小值【题目点拨】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.20、(1),(2)【解题分析】

(1)根据分层抽样的概念,可得,求解即可;(2)分别记从高校抽取的2人为,,从高校抽取的3人为,,,先列出从5人中选2人作专题发言的基本事件,再列出2人都来自高校的基本事件,进而求出概率【题目详解】(1)由题意可得,所以,(2)记从高校抽取的2人为,,从高校抽取的3人为,,,则从高校,抽取的5人中选2人作专题发言的基本事件有,,,,,,,,,共10种设选中的2人都来自高校的事件为,则包含的基本事件有,,共3种因此,故选中的2人都来自高校的概率为【题目点拨】本题考查分层抽样,考查古典概型,属于基础题21、(1)或.(2)【解题分析】

(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【题目详解】解:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论