小波-泛函分析学习感悟-超详细_第1页
小波-泛函分析学习感悟-超详细_第2页
小波-泛函分析学习感悟-超详细_第3页
小波-泛函分析学习感悟-超详细_第4页
小波-泛函分析学习感悟-超详细_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泛函分析知识总结与举例、应用学习感悟度量空间和赋范线性空间〔一〕度量空间度量空间在泛函分析中是最根本的概念,它是维欧氏空间〔有限维空间〕的推广,所以学好它有助于后面知识的学习和理解。1.度量定义:设X是一个集合,假设对于X中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足以下条件:1°d(x,y)≥0,d(x,y)=0〔非负性〕2°d(x,y)=d(y,x)〔对称性〕3°对z,都有d(x,y)≤d(x,z)+d(z,y)〔三点不等式〕那么称d(x,y)是x、y之间的度量或距离〔matric或distance〕,称为(X,d)度量空间或距离空间(metricspace)。〔这个定义是证明度量空间常用的方法〕注意:⑴定义在X中任意两个元素x,y确定的实数d(x,y),只要满足1°、2°、3°都称为度量。这里“度量〞这个名称已由现实生活中的意义引申到一般情况,它用来描述X中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。⑵度量空间中由集合X和度量函数d所组成,在同一个集合X上假设有两个不同的度量函数和,那么我们认为(X,)和(X,)是两个不同的度量空间。⑶集合X不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点〞,例如假设,那么称为“X中的点〞。⑷在称呼度量空间(X,d)时可以省略度量函数d,而称“度量空间X〞。1.1举例1.11离散的度量空间:设X是任意的非空集合,对X中任意两点x,y∈X,令,那么称〔X,d〕为离散度量空间。1.12序列空间S:S表示实数列〔或复数列〕的全体,d(x,y)=;1.13有界函数空间B(A):A是给定的集合,B(A)表示A上有界实值〔或复值〕函数全体,对B(A)中任意两点x,y,定义d(x,y)=1.14可测函数空间M(X):M(X)为X上实值〔或复值〕的L可测函数全体。1.15C[a,b]空间〔重要的度量空间〕:C[a,b]表示闭区间[a,b]上实值〔或复值〕连续函数全体,对C[a,b]中任意两点x,y,定义d(x,y)=1.16:无限维空间〔重要的度量空间〕★例1.15、1.16是考试中常考的度量空间。2.度量空间中的极限,稠密集,可分空间2.1的—领域:设〔X,d〕为度量空间,d是距离,定义为的以为半径的开球,亦称为的—领域。注:通过这个定义我们可以从点集这一章学到的知识来定义距离空间中一个点集的内点,外点,边界点及聚点,导集,闭包,开集等概念。2.2度量空间的收敛点列:设(X,d)是一个度量空间,是〔X,d〕中点列,如果存在,收敛于,使,即,称点列是〔X,d〕中的收敛点列,x叫做点列的极限,且收敛点列的极限是唯一的。注:度量空间中点列收敛性质与数列的收敛性质有许多共同之处。2.3有界集:设M是度量空间〔X,d〕中的点集,定义为点集M的直径。假设,那么称M为〔X,d〕中的有界集。〔类似于,我们可以证明一个度量空间中收敛点列是有界点集〕2.4闭集:A是闭集A中任意收敛点列的极限都在A中,即假设,n=1,2,.,那么。〔要会证明〕2.5举例n维欧氏空间中,点列依距离收敛依分量收敛。C[a,b]空间中,点列依距离收敛依分量一致收敛。序列空间S中,点列依坐标收敛。可测函数空间M(X):函数列依测度收敛于f,即。2.6稠密子集和可分度量空间有理数集在实数集中的稠密性,它属于实数集中,现把稠密性推广到一般的度量空间中。2.6.1定义:设X是度量空间,E和M是X的两个子集,令表示M的闭包,如果E⊂,那么称集M在集E中稠密,当E=X时,称M为X的一个稠密子集,如果X有一个可数的稠密子集,那么称X为可分空间。注:可分空间与稠密集的关系:由可分空间定义知,在可分空间X中一定有稠密的可数集。这时必有X中的有限个或可数个点在X中稠密。举例①n维欧式空间是可分空间:坐标为有理数的全体是的可数稠密子集。②离散度量空间X可分X是可数集。〔因为X中无稠密真子集,X中唯一的稠密只有X本身〕③是不可分空间。数学知识间都有联系,现根据直线上函数连续性的定义,引进了度量空间中映射连续性的概念。3.连续映射3.1定义:设X=〔X,d〕Y=〔Y,〕是两个度量空间,T是X到Y中的映射єX,如果对ε>0,δ>0,使对X中一切满足d〔x,〕<δ的x,有,那么称T在连续。〔度量空间之间的连续映射是数学分析中连续函数概念的推广,特别,当映射是值域空间时,映射就是度量空间上的函数。〕注:对于连续可以用定义证明,也可以用邻域的方法证明。下面用邻域描述:对T的ε-邻域U,存在的某个δ—邻域V,使TVU,其中TV表示V在映射T作用下的像。3.2定理1:设T是度量空间〔X,d〕到度量空间〔Y,〕中映射,T在连续⇔当时,必有。在映射中我们知道像与原像的概念,下面对原像给出定义。3.3原像的定义:映射T在X的每一点都连续,那么称T是X上的连续映射,称集合{x∣x∈X,Tx⊂M⊂Y}为集合M在映射T下的原像,简记为。★可见,对于度量空间中的连续映射可以用定理来证明,也可以用原像的定义来证明。3.4定理2:度量空间X到Y中的映射T是X上连续映射⇔Y中任意开集M的原像是X中的开集〔除此之外,利用〔M的补集〕=〔〕的补集,可将定理中开集改成闭集,定理也成立。〕注:像开原像开,像闭原像闭,映射连续。在数学分析中有学过收敛点列,柯西点列,但研究都在R中。现在我们可类似的给出度量空间中柯西点列的概念。4.柯西〔〕点列和完备的度量空间。4.1柯西点列的定义:设X=〔X,d〕是度量空间,{}是X中的点列,对ε>0,正整数N=N〔ε〕,使当n,m>N时,必有d〔,〕<ε,那么称{}是X中的柯西〔Cauchy〕点列或根本点列。【会判断:柯西点列是有界点列】我们知道实数集的完备性,同时在学习数列收敛时,数列收敛的充要条件是数列是Cauchy列,这由实数的完备性所致。在度量空间中,这一结果未必成立。但在度量空间中确实存在完备的度量空间。4.2完备的度量空间的定义:如果度量空间〔X,d〕中每一个柯西点列都在〔X,d〕中收敛,那么称〔X,d〕是完备的度量空间.★但要注意,在定义中要求X中存在一点,使该柯西点列收敛到这一点。4.3举例〔记住结论〕4.3.1有理数全体按绝对值距离构成的空间不完备,但n维欧式空间是完备的度量空间。4.3.2在一般度量空间中,柯西点列不一定收敛,但是度量空间中的每一个收敛点列都是柯西点列:C、C[a,b]、也是完备的度量空间。4.4定理完备度量空间X的子空间M,是完备空间M是X中的闭子空间。P[a,b]〔表示闭区间[a,b]上实系数多项式全体,作为C[a,b]的子空间〕是不完备的度量空间.5.度量空间的完备化。5.1等距映射:设〔X,d〕,是两个度量空间,T是从X到上的映射,即对x,y,(Tx,Ty)=d(x,y),那么称T是等距映射。5.2定义:设〔X,d〕,是两个度量空间,如果存在一个从X到上的等距映射T,那么称〔X,d〕和等距同构,此时T称为X到上的等距同构映射。〔像的距离等于原像的距离〕注:在泛函分析中往往把两个等距同构的度量空间不加区别而视为同一的。5.2定理1〔度量空间的完备化定理〕:设X=〔X,d〕是度量空间,那么一定存在完备度量空间,使X与的某个稠密子空间W等距同构,并且在等距同构下是唯一的,即假设〔,〕也是一个完备的度量空间,且X与的某个稠密子空间等距同构,那么与〔,〕等距同构。(不需要掌握证明但是要记住结论)定理1的改述:设是度量空间,那么存在唯一的完备度量空间,使为的稠密子空间。6.压缩映射原理及其应用〔重点内容,要求掌握并会证明〕学习完备度量空间概念,就需要应用,而压缩映像原理是求解代数方程、微分方程、积分方程,以及数值分析中迭代算法收敛性很好的工具,另外要学会如何求不动点。6.1压缩映射定义:X是度量空间,T是X到X的映射,如果存在一个数α,,使对x,y,d〔Tx,Ty〕≦αd〔x,y〕那么称T为压缩映射。6.2〔压缩映射定理〕设X是完备的度量空间,T是X上的压缩映射,那么T有且仅有一个不动点〔即方程Tx=x,有且只有一个解〕。〔x是T的不动点x是方程Tx=x的解〕这个定理对代数方程、微分方程、积分方程、数值分析的解的存在性和唯一性的证明中起重要作用。6.3压缩映射原理的应用:在众多情况下,求解各种方程的问题可以转化为求其某一映射的不动点,现在以大家熟悉的一阶常微分方程〔1〕为例来说明这一点。求微分方程〔1〕满足初始条件的解与求积分方程〔2〕等价。我们做映射那么方程〔2〕的解就转化为求,使之满足。也就是求这样的,它经映射作用后仍变为。因此,求解方程〔1〕就变为求映射的不动点,这种求解方程变为求解映射的不动点的做法在数学中是常用的。那么如何求解映射的不动点呢?在中求方程解的逐次逼近法给了我们启示。这种迭代原理是解决映射不动点问题最根本的方法。在解决上述问题中,看到实数完备性的重要作用。代数方程、微分方程、积分方程及其他方程求解的逐次逼近法在泛函分析中成了一个一般原理,即压缩映射原理,压缩映射原理就是某一类映射不动点存在性和惟一性问题,不动点可以通过迭代序列求出。注:〔1〕从定理的证明过程中发现,迭代序列的初始值可任意选取,最终都能收敛到惟一不动点。〔2〕该定理提供了近似计算不动点的误差估计公式,即因为完备度量空间的任何子集在原有度量下仍然是完备的,所以定理中的压缩映射不需要在整个空间上有定义,只要在某个闭集上有定义,且像也在该闭集内,定理的结论依然成立。在实际应用过程中,有时本身未必是压缩映射,但的假设干次复合是压缩映射,这时仍然有惟一不动点,下面是压缩映射原理的应用及相关证明。例1线性代数方程均可写成如下形式〔3〕其中,。如果矩阵满足条件那么式〔3〕存在惟一解,且此解可由迭代求得。证明:取,定义度量为构造映射为,那么方程〔3〕的解等价于映射的不动点。对于,由于记,由条件,因此是压缩映像,于是有惟一不动点,所以方程〔3〕有惟一解,且此解可由如下迭代序列近似计算求得。例2考察如下常微分方程的初值问题〔4〕如果在上连续,且关于第二元满足条件,即这里是常数,那么方程〔4〕在上有惟一解。证明:方程〔4〕的解等价于如下方程〔5〕的解。取连续函数空间,定义其上的映射为那么积分方程〔5〕的解等价于的不动点。对任意两个连续函数,,由于令,那么,故是压缩映射,从而有惟一不动点,即积分方程〔5〕有唯一解,从而微分方程〔4〕在上有惟一解。例3设是定义在上的二元连续函数,那么对于任何常数及任何给定的连续函数,如下型积分方程(6)存在唯一解。证明:取连续函数空间,其上定义映射:为那么方程〔6〕的解等价于的不动点。由于在上连续,于是在有最大值,记为,即对任何两个连续函数,由于一般地,对自然数,归纳可得因此注意到,因此存在自然数,满足这说明是压缩映射,由压缩映射原理可知,有惟一不动点,亦即型积分方程〔6〕有惟一解。例4〔隐函数存在定理〕设函数在带状域,中处处连续,且处处有关于的偏导数。如果存在常数和,满足,那么方程在区间上必有惟一的连续函数作为解,即证明:在完备空间中作映射,使对于任意的函数,有按定理条件,是连续的,所以也是连续的,即,故是到的映射。现证是压缩映射,由微分中值定理存在使又所以令,那么,且按中距离的定义,有,所以是压缩映像,存在使,即,即,所以★可见,压缩映射原理在处理迭代数列的收敛、微分方程定解等问题上有着重要的应用,其观点与方法已经渗透到数学的各个分支如常微分方程、数值计算,加深了各分支间的相互联系,应用压缩映射原理解决问题也十分简洁、灵活和方便。〔二〕赋范线性空间1.线性空间设是非空集合,是实数域或复数域,称为上的线性空间,如果满足以下条件:对两个元素,中惟一个元素与之对应,称为与的和,记为,且满足:〔1〕交换律;〔2〕结合律;〔3〕在中存在一个元素,称为零元,使;〔4〕对每个,存在,使,称为的负元。对任意数及,存在中惟一元素与之对应,记为,称为与的数乘,且满足:〔1〕结合律:〔2〕;〔3〕数乘对加法分配律;〔4〕加法对数乘分配律。如果,称为实线性空间;如果〔复数域〕,称为复线性空间。对于线性空间:是线性空间〔满足加法和数乘运算〕,是的非空子集,任意及任意αєR,都有及,那么按中加法和数乘运算也成为线性空间,称为的子空间,和{0}是平凡子空间。假设,那么称是的真子空间。2.赋范线性空间和巴拿赫〔Banach〕空间〔重点内容〕2.1定义:设X为实〔或复〕的线性空间,如果对每一个向量,有一个确定的实数,记为║x║与之对应,并且满足:〔1〕║x║≥0且║x║=0x=0〔2〕║αx║=α║x║其中α为任意实〔复〕数〔3〕║x+y║≤║x║+║y║那么称║x║为向量x的范数,称按范数║x║成为赋范线性空间扩展:①║║是的连续函数。〔要会证明〕②设{}是X中的点列,如果,使║║→0〔n→∞〕那么称{}依范数收敛于,记为〔n→∞〕或③如果令d〔x,y〕=║x-y║〔〕,{}依范数收敛于{}按距离d〔x,y〕收敛于,称d〔x,y〕为是由范数║║导出的距离。★注意:线性贱范空间一定是度量空间,反过来不一定成立。2.2完备的线性赋范空间称为巴拿赫〔Banach〕空间2.2.1巴拿赫空间的举例①n维欧式空间Req\o(\s\up5(n),\s\do3())②C[a,b]③④Leq\o(\s\up6(p),\s\do3())[a,b]⑤2.2.2其他:①霍尔德Horder(不等式):dt;②闵可夫斯基不等式:。〔记住结论并会应用〕二、有界线性算子和连续线性泛函1.算子定义:赋范线性空间X到另一个赋范线性空间Y的映射,被称为算子,如果Y是数域,那么被称为泛函。2.线性算子和线性泛函2.1定义:设X和Y是两个同为实〔或复〕的线性空间,(Đ)是X的线性子空间,T为到Y中的映射,如果对任何x,y∈及数α,都有T〔x+y〕=Tx+Ty〔1〕T〔αx〕=αTx〔2〕那么称T为到Y中的线性算子,其中称为T的定义域,记为〔T〕,T称为T的值域记为(T),当T取值于实〔或复〕数域时,称T为实〔或复〕线性泛函。2.2几种常见的线性算子和线性泛函的例子:①相似算子Tx=αx当α=1时为恒等算子;当α=0时为零算子;②P[0,1]是[0,1]上的多项式全体,定义微分算子:,假设t0∈[0,1],对x∊P[0,1],定义〔x〕=x´〔t0〕那么是P[0,1]上的线性泛函。③积分算子:x∈C[a,b]Tx〔t〕=∫eq\o(\s\up5(t),\s\do3(a))x由积分线性性质知T为线性算子,假设令=∫eq\o(\s\up5(b),\s\do2(a))x那么是C[a,b]中的线性泛函④乘法算子:x∈C[a,b]Tx〔t〕=tx〔t〕⑤Req\o(\s\up5(n),\s\do3())中的线性变换是线性算子3.有界线性算子3.1定义:设X和Y是两个线性赋范空间,T是X的线性子空间〔T〕到Y中线性算子,如果存在常数c,使对所有x∈〔T〕,有:║Tx║≤c║x║

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论