版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区百色市田阳县田阳高中2024届数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为,分别根据下列条件解三角形,其中有两解的是()A.B.C.D.2.如果数列的前项和为,则这个数列的通项公式是()A. B. C. D.3.过点且与直线垂直的直线方程是()A. B. C. D.4.已知等边三角形ABC的边长为1,,那么().A.3 B.-3 C. D.5.如图所示四棱锥的底面为正方形,平面则下列结论中不正确的是()A. B.平面C.直线与平面所成的角等于30° D.SA与平面SBD所成的角等于SC与平面SBD所成的角6.已知数列的前项和为,且,则()A. B. C. D.7.设为直线,是两个不同的平面,下列说法中正确的是()A.若,则B.若,则C.若,则D.若,则8.若直线与圆相切,则()A. B. C. D.或9.().A. B. C. D.10.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ C.①Ⅱ,②Ⅲ D.①Ⅲ,②Ⅱ二、填空题:本大题共6小题,每小题5分,共30分。11.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.12.记为数列的前项和.若,则_______.13.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为,乙加工零件个数的平均数为,则______.14.在ΔABC中,a比c长4,b比c长2,且最大角的余弦值是-12,则15.关于的方程只有一个实数根,则实数_____.16.等腰直角中,,CD是AB边上的高,E是AC边的中点,现将沿CD翻折成直二面角,则异面直线DE与AB所成角的大小为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,,且边上的中线长为,(1)求角的大小;(2)求的面积.18.在中,(Ⅰ)求;(Ⅱ)若,,求的值19.如图所示,在中,点在边上,,,,.(1)求的值;(2)求的面积.20.求倾斜角为且分别满足下列条件的直线方程:(1)经过点;(2)在轴上的截距是-5.21.在锐角三角形中,内角的对边分别为且.(1)求角的大小;(2)若,,求△的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除.【题目详解】A.,由所以不存在这样的三角形.B.,由且所以只有一个角BC.中,同理也只有一个三角形.D.中此时,所以出现两个角符合题意,即存在两个三角形.所以选择D【题目点拨】在直接用正弦定理求另外一角中,求出后,记得一定要去判断是否会出现两个角.2、B【解题分析】
根据,当时,,再结合时,,可知是以为首项,为公比的等比数列,从而求出数列的通项公式.【题目详解】由,当时,,所以,当时,,此时,所以,数列是以为首项,为公比的等比数列,即.故选:B.【题目点拨】本题考查了利用递推公式求数列的通项公式,考查了计算能力,属于基础题.3、D【解题分析】
由已知直线方程求得直线的斜率,再根据两直线垂直,得到所求直线的斜率,最后用点斜式写出所求直线的方程.【题目详解】已知直线的斜率为:因为两直线垂直所以所求直线的斜率为又所求直线过点所以所求直线方程为:即:故选:D【题目点拨】本题主要考查了直线与直线的位置关系及直线方程的求法,还考查了运算求解的能力,属于基础题.4、D【解题分析】
利用向量的数量积即可求解.【题目详解】解析:.故选:D【题目点拨】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.5、C【解题分析】
根据空间中垂直关系的判定和性质,平行关系的判定和性质,以及线面角的相关知识,对选项进行逐一判断即可.【题目详解】对A:因为底面ABCD为正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正确;对B:因为底面ABCD为正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正确.对C:由A中推导可知AC平面SBD,故取AC与BD交点为O,连接SO,如图所示:则即为所求线面角,但该三角形中边长关系不确定,故线面角的大小不定,故C错误;对D:由AC平面SBD,故取AC与BD交点为O,连接SO,则即为SA和SC与平面SBD所成的角,因为,故,故D正确.综上所述,不正确的是C.故选:C.【题目点拨】本题综合考查线面垂直的性质和判定,线面平行的判定,线面角的求解,属综合基础题.6、D【解题分析】
通过和关系,计算通项公式,再计算,代入数据得到答案.【题目详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【题目点拨】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.7、C【解题分析】
画出长方体,按照选项的内容在长方体中找到相应的情况,即可得到答案【题目详解】对于选项A,在长方体中,任何一条棱都和它相对的两个平面平行,但这两个平面相交,所以A不正确;对于选项B,若,分别是长方体的上、下底面,在下底面所在平面中任选一条直线,都有,但,所以B不正确;对于选项D,在长方体中,令下底面为,左边侧面为,此时,在右边侧面中取一条对角线,则,但与不垂直,所以D不正确;对于选项C,设平面,且,因为,所以,又,所以,又,所以,所以C正确.【题目点拨】本题考查直线与平面的位置关系,属于简单题8、D【解题分析】
本题首先可根据圆的方程确定圆心以及半径,然后根据直线与圆相切即可列出算式并通过计算得出结果。【题目详解】由题意可知,圆方程为,所以圆心坐标为,圆的半径,因为直线与圆相切,所以圆心到直线距离等于半径,即解得或,故选D。【题目点拨】本题考查根据直线与圆相切求参数,考查根据圆的方程确定圆心与半径,若直线与圆相切,则圆心到直线距离等于半径,考查推理能力,是简单题。9、D【解题分析】
运用诱导公式进行化简,最后逆用两角和的正弦公式求值即可.【题目详解】,故本题选D.【题目点拨】本题考查了正弦的诱导公式,考查了逆用两角和的正弦公式,考查了特殊角的正弦值.10、B【解题分析】解:(1)中由于小区中各个家庭收入水平之间存在明显差别故(1)要采用分层抽样的方法(2)中由于总体数目不多,而样本容量不大故(2)要采用简单随机抽样故问题和方法配对正确的是:(1)Ⅲ(2)Ⅰ.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【题目详解】.故答案为:2【题目点拨】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.12、【解题分析】
由和的关系,结合等比数列的定义,即可得出通项公式.【题目详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【题目点拨】本题主要考查了已知求,属于基础题.13、44.5【解题分析】
由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【题目详解】由茎叶图知,甲加工零件个数的中位数为,乙加工零件个数的平均数为,则.【题目点拨】本题主要考查利用茎叶图求中位数和平均数.14、15【解题分析】
由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【题目详解】根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c−3)(解得:c=3或c=−2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=12bcsinA=15故答案为:153【题目点拨】余弦定理一定要熟记两种形式:(1)a2=b2+15、【解题分析】
首先从方程看是不能直接解出这个方程的根的,因此可以转化成函数,从函数的奇偶性出发。【题目详解】设,则∴为偶函数,其图象关于轴对称,又依题意只有一个零点,故此零点只能是,所以,∴,∴,∴,∴,故答案为:【题目点拨】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。16、【解题分析】
取的中点,连接,则与所成角即为与所成角,根据已知可得,,可以判断三角形为等边三角形,进而求出异面直线直线DE与AB所成角.【题目详解】取的中点,连接,则,直线DE与AB所成角即为与所成角,,,,,,即三角形为等边三角形,异面直线DE与AB所成角的大小为.故答案为:【题目点拨】本题考查立体几何中的翻折问题,考查了异面直线所成的角,考查了学生的空间想象能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】
(1)本题可根据三角函数相关公式将化简为,然后根据即可求出角的大小;(2)本题首先可设的中点为,然后根据向量的平行四边形法则得到,再然后通过化简计算即可求得,最后通过三角形面积公式即可得出结果.【题目详解】(1)由正弦定理边角互换可得,所以.因为,所以,即,即,整理得.因为,所以,所以,即,所以.因为,所以,即.(2)设的中点为,根据向量的平行四边形法则可知所以,即,因为,,所以,解得(负值舍去).所以.【题目点拨】本题考查三角恒等变换公式及解三角形相关公式的应用,考查了向量的平行四边形法则以及向量的运算,考查了化归与转化思想,体现了综合性,是难题.18、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)由正弦定理、二倍角公式,结合可将已知边角关系式化简为,从而求得,根据可求得;(Ⅱ)由三角形面积公式可求得;利用余弦定理可构造方程求得结果.【题目详解】(Ⅰ)由正弦定理得:,即(Ⅱ)由得:由余弦定理得:【题目点拨】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,属于常考题型.19、(1)(2)【解题分析】
(1)设,分别在和中利用余弦定理计算,联立方程组,求得的值,再由余弦定理,即可求解的值;(2)由(1)的结论,计算,利用三角形的面积公式,即可求解.【题目详解】(1),则,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【题目点拨】本题主要考查了余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理列出方程是解答的关键,着重考查了运算与求解能力,属于基础题.20、(1)(2)【解题分析】
(1)利用倾斜角与斜率的关系与点斜式求解即可.(2)利用点斜式求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年数据服务与云存储技术许可合同
- 福建省控规入库合同范例
- 餐厅管理托管合同范例
- 商洛学院《机电传动控制》2023-2024学年第一学期期末试卷
- 个人买猫合同范例
- 汕头大学《中学思想政治课课程标准与教材研究》2023-2024学年第一学期期末试卷
- 陕西中医药大学《新闻传播大讲堂》2023-2024学年第一学期期末试卷
- 2024至2030年车床标牌项目投资价值分析报告
- 种苗订购合同范例
- 放射防护合同范例
- 2024年度餐饮店合伙人退出机制与财产分割协议2篇
- 《招商银行转型》课件
- 灵新煤矿职业病危害告知制度范文(2篇)
- 2024年护校队安全工作制度(3篇)
- 2024年安徽省广播电视行业职业技能大赛(有线广播电视机线员)考试题库(含答案)
- 大学英语-高职版(湖南环境生物职业技术学院)知到智慧树答案
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 糖尿病酮酸症中毒
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
- 东北师大附属中学2025届高一物理第一学期期末质量检测试题含解析
- 金蛇纳瑞2025年公司年会通知模板
评论
0/150
提交评论