版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市华二附中数学高一下期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若不等式对实数恒成立,则实数的取值范围()A.或 B.C. D.2.一位妈妈记录了孩子6至9岁的身高(单位:cm),所得数据如下表:年龄(岁)6789身高(cm)118126136144由散点图可知,身高与年龄之间的线性回归方程为,预测该孩子10岁时的身高为A.154 B.153 C.152 D.1513.若关于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)4.若是一个圆的方程,则实数的取值范围是()A. B.C. D.5.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=6.从A,B,C三个同学中选2名代表,则A被选中的概率为()A. B. C. D.7.等差数列中,已知,则()A.1 B.2 C.3 D.48.已知是两条异面直线,,那么与的位置关系()A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直9.直线xy+1=0的倾斜角是()A.30° B.60°C.120° D.150°10.已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且,则此棱锥的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,已知,则=________________.12.程序:的最后输出值为___________________.13.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.14.已知,若直线与直线垂直,则的最小值为_____15.已知一圆台的底面圆的半径分别为2和5,母线长为5,则圆台的高为_______.16.在等差数列中,,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与平行.(1)求实数的值:(2)设直线过点,它被直线,所截的线段的中点在直线上,求的方程.18.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.19.已知公差不为零的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.20.如图,在中,,为内一点,.(1)若,求;(2)若,求的面积.21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
对m分m≠0和m=0两种情况讨论分析得解.【题目详解】由题得时,x<0,与已知不符,所以m≠0.当m≠0时,,所以.综合得m的取值范围为.故选C【题目点拨】本题主要考查一元二次不等式的恒成立问题,意在考查学生对该知识的理解掌握水平和分析推理能力.2、B【解题分析】试题分析:根据题意,由表格可知,身高y与年龄x之间的线性回归直线方程为,那么可知回归方程必定过样本中心点,即为(7,131)代入可知,=65,预测该学生10岁时的身高,将x=10代入方程中,即可知为153,故可知答案为B考点:线性回归直线方程点评:主要是考查了线性回归直线方程的回归系数的运用,属于基础题.3、B【解题分析】
由题意,得出a≠0,再分析不等式开口和判别式,可得结果.【题目详解】由题,因为为一元二次不等式,所以a≠0又因为ax所以a>0Δ=故选B【题目点拨】本题考查了一元二次不等式解法,利用二次函数图形解题是关键,属于基础题.4、C【解题分析】
根据即可求出结果.【题目详解】据题意,得,所以.【题目点拨】本题考查圆的一般方程,属于基础题型.5、B【解题分析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.6、D【解题分析】
先求出基本事件总数,被选中包含的基本事件个数,由此能求出被选中的概率.【题目详解】从,,三个同学中选2名代表,基本事件总数为:,共个,被选中包含的基本事件为:,共2个,被选中的概率.故选:D.【题目点拨】本题考查概率的求法,考查列举法和运算求解能力,是基础题.7、B【解题分析】
已知等差数列中一个独立条件,考虑利用等差中项求解.【题目详解】因为为等差数列,所以,由,,故选B.【题目点拨】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.8、C【解题分析】
由平行公理,若,因为,所以,与、是两条异面直线矛盾,异面和相交均有可能.【题目详解】、是两条异面直线,,那么与异面和相交均有可能,但不会平行.因为若,因为,由平行公理得,与、是两条异面直线矛盾.故选C.【题目点拨】本题主要考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力,属于基础题.9、D【解题分析】
首先求出直线的斜率,由倾斜角与斜率的关系即可求解.【题目详解】直线xy+1=0的斜率,设其倾斜角为θ(0°≤θ<180°),则tan,∴θ=150°故选:D【题目点拨】本题考查直线斜率与倾斜角的关系,属于基础题.10、A【解题分析】
根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】12、4;【解题分析】
根据赋值语句的作用是将表达式所代表的值赋给变量,然后语句的顺序可求出的值.【题目详解】解:执行程序语句:
=1后,=1;
=+1后,=2;
=+2后,=4;
后,输出值为4;
故答案为:4【题目点拨】本题主要考查了赋值语句的作用,解题的关键对赋值语句的理解,属于基础题.13、0.72【解题分析】
根据对立事件的概率公式即可求解.【题目详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【题目点拨】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.14、8【解题分析】
两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【题目详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【题目点拨】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.15、4【解题分析】
根据圆台轴截面等腰梯形计算.【题目详解】,设圆高为,由圆台轴截面是等腰梯形得:,即,,故答案为:4.【题目点拨】本题考查求圆台的高,解题关键是掌握圆台的性质,圆台轴截面是等腰梯形.16、8【解题分析】
设等差数列的公差为,则,所以,故答案为8.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)【解题分析】
(1)利用两直线平行的条件进行计算,需注意重合的情况。(2)求出到平行线与距离相等的直线方程为,将其与直线联立,得到直线被直线,所截的线段的中点坐标,进而求出直线的斜率,可得直线的方程。【题目详解】(1)∵直线与平行,∴且,即且,解得.(2)∵,直线:,:故可设到平行线与距离相等的直线方程为,则,解得:,所以到平行线与距离相等的直线方程为,即直线被直线,所截的线段的中点在上,联立,解得,∴过点∴,的方程为:,化简得:.【题目点拨】本题主要考查直线与直线的位置关系以及直线斜率、直线的一般方程的求解等知识,解题的关键是熟练掌握两直线平行的条件,直线的斜率公式,平行线间的距离公式,属于中档题。18、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解题分析】
(1)先求出BC的斜率,再用点斜式求出过点A且平行于BC边的直线方程;
(2)先求出BC的中点为D的坐标,再用两点式求出直线AD的方程.【题目详解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率为,故过点A且平行于BC边的直线的方程为y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中点为D(2,3),由两点式求出BC边的中线所在直线AD的方程为,即7x﹣y﹣11=1.【题目点拨】本题主要考查直线的斜率公式,用点斜式、两点式求直线的方程,属于基础题.19、(1);(2).【解题分析】试题分析:(1)利用等差等比基本公式,计算数列的通项公式;(2)利用裂项相消法求和.试题解析:(1)设公差为,因为,,成等数列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.20、(1);(2).【解题分析】
(1)求出,,中由余弦定理即可求得;(2)设,利用正弦定理表示出,求得,利用面积公式即可得解.【题目详解】(1)在中,,为内一点,,,所以,中,由余弦定理得:所以中,由余弦定理得:;(2),设,在中,,在中,由正弦定理,即,,所以,的面积.【题目点拨】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.21、(1)(2)该高三学生的记忆力x和判断力是正相关;判断力为4的同学的记忆力约为9【解题分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电路分析基 础》课件-西电第2章电路分析的基本方法
- 《大学英语听力应用教程(第1册)》课件-Unit 12 What is Intelligence
- 杭州开创非融资性担保有限公司的担保合同
- 天津航道局劳务派遣合同
- 2025年三明货运从业资格证考试题库
- 2025年太原货运资格证试题答案
- 2025年海西下载货运从业资格证模拟考试系统试题
- 2025年三亚货运从业资格证模拟考试下载
- 水电工程项目招标疑问
- 水果中心配电房施工合同
- 医院患者诊疗信息安全风险评估和应急工作机制制定应急预案XX医院患者诊疗信息安全风险应急预案
- 科技论文写作PPTPPT通用课件
- 漆洪波教授解读美国妇产科医师学会“妊娠高血压疾病指南2013版”
- 《刘姥姥进大观园》课本剧剧本3篇
- 标准OBD-II故障码
- 连铸机维护及维修标准
- 低压配电室安全操作规程
- 广东省医疗机构应用传统工艺配制中药制剂首次备案工作指南
- 大学英语议论文写作模板
- 安川机器人远程控制总结 机器人端
- 良性阵发性位置性眩晕诊疗和治疗
评论
0/150
提交评论