版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省开封市兰考县第三中学2024届高一数学第二学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.2.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B. C. D.3.已知函数的图象过点,且在上单调,同时的图象向左平移个单位之后与原来的图象重合,当,且时,,则A. B. C. D.4.在复平面内,复数满足,则的共轭复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.6.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.7.下列命题中错误的是()A.若,则 B.若,则C.若,则 D.若,则8.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不确定9.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384 B.0.65 C.0.9 D.0.90410.已知集合,则().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列中,,,则数列通项___________12.函数的最大值为.13.在等比数列中,若,则__________.14.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率为________.15.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.16.在行列式中,元素的代数余子式的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,求的值.18.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.19.已知函数.(1)若函数的周期,且满足,求及的递增区间;(2)若,在上的最小值为,求的最小值.20.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.21.已知数列满足,,.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【题目详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【题目点拨】本题主要考查利用不等式的性质判断不等关系,属于基础题.2、B【解题分析】试题分析:如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.考点:异面直线所成的角.【名师点睛】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.3、A【解题分析】由题设可知该函数的周期是,则过点且可得,故,由可得,所以由可得,注意到,故,所以,应选答案A点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.4、A【解题分析】
把已知等式变形,利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【题目详解】由z(1﹣i)=2,得z=,∴.则z的共轭复数对应的点的坐标为(1,﹣1),位于第四象限.故选D.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.5、C【解题分析】
根据平均数的性质和方差的性质即可得到结果.【题目详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【题目点拨】本题考查平均数和方差的性质,属基础题.6、D【解题分析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.7、D【解题分析】
根据不等式的性质、对数函数和指数函数的单调性,对选项逐一分析,由此得出正确选项.【题目详解】对于A选项,根据不等式传递性可知,A选项命题正确.对于B选项,由于在定义域上为增函数,故B选项正确.对于C选项,由于在定义域上为增函数,故C选项正确.对于D选项,当时,命题错误.故选D.【题目点拨】本小题主要考查不等式的性质,考查指数函数和对数函数的单调性,属于基础题.8、C【解题分析】
先求均值,再根据标准差公式求标准差,最后比较大小.【题目详解】乙选手分数的平均数分别为所以标准差分别为因此s1<s2,选C.【题目点拨】本题考查标准差,考查基本求解能力.9、C【解题分析】
由随机模拟实验结合图表计算即可得解.【题目详解】由随机模拟实验可得:“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中最多成功1次”共141,601两组随机数,则“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”共组随机数,即事件的概率为,故选.【题目点拨】本题考查了随机模拟实验及识图能力,属于中档题.10、B【解题分析】
求解一元二次不等式的解集,化简集合的表示,最后运用集合交集的定义,结合数轴求出.【题目详解】因为,所以,故本题选B.【题目点拨】本题考查了一元二次不等式的解法,考查了集合交集的运算,正确求解一元二次不等式的解集、运用数轴是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分析:在已知递推式两边同除以,可得新数列是等差数列,从而由等差数列通项公式求得,再得.详解:∵,∴两边除以得,,即,∵,∴,∴是以为首项,以为公差的等差数列,∴,∴.故答案为.点睛:在求数列公式中,除直接应用等差数列和等比数列的通项公式外,还有一种常用方法:对递推式化简变形,可构造出新数列为等差数列或等比数列,再由等差(比)数列的通项公式求出结论.这是一种转化与化归思想,必须掌握.12、【解题分析】略13、80【解题分析】
由即可求出【题目详解】因为是等比数列,所以,所以即故答案为:80【题目点拨】本题考查的是等比数列的性质,较简单14、0.2【解题分析】从1,2,3,4,5中任意取两个不同的数共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)10种.其中和为5的有(1,4),(2,3)2种.由古典概型概率公式知所求概率为=.15、.【解题分析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【题目详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【题目点拨】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.16、【解题分析】
根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【题目详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【题目点拨】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
由即,解得:(因为舍去)或.18、(Ⅰ);(Ⅱ)或.【解题分析】
分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【题目详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.19、(1),;(2)2.【解题分析】
(1)由函数的性质知,关于直线对称,又函数的周期,两个条件两个未知数,列两个方程,所以可以求出,进而得到的解析式,求出的递增区间;(2)求出的所有解,再解不等式,即可求出的最小值.【题目详解】(1),由知,∴对称轴∴,又,,由,得,函数递增区间为;(2)由于,在上的最小值为,所以,即,所以,所以.【题目点拨】本题主要考查三角函数解析式、单调区间以及最值的求法,特别注意用代入法求单调区间时,要考虑复合函数的单调性,以免求错.20、(1);(2)【解题分析】
(1)设,再根据化简求解方程即可.(2)设过定点的直线方程为,根据轴平分可得.再联立直线与圆的方程,化简利用韦达定理求解中参数的关系,进而求得定点即可.【题目详解】(1)设,因为,故,即,整理可得.(2)当直线与轴垂直,且在圆内时,易得关于轴对称,故必有轴平分.当直线斜率存在时,设过定点的直线方程为.设.联立,.因为无论直线如何运动,轴都平分,故,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青年教师学习心得体会
- xx市供气项目可行性研究报告
- 老旧厂区改造项目投资估算与资金筹措方案
- 供气资源与环境影响评估
- 省级产业园区基础设施项目概述
- 2024年精炼煤炭购销标准协议模版版
- 物流教育机器人课程设计
- 2024年石油行业安全生产与应急管理服务合同3篇
- 2024年版建筑水电安装工程劳务合作合同样本版
- 2024年版商业场地合作经营协议3篇
- 急性化脓性中耳炎病人的护理课件
- 中小学美术教学论
- 临床医学研究生毕业答辩模板
- 中药煎煮协议书
- 期末测试卷(试题)-2023-2024学年人教精通版英语五年级上册
- 2024年高考语文阅读之王愿坚小说专练(解析版)
- 2020年护理组织管理体系
- 六大茶类之红茶
- 重症感染和感染性休克治疗新进展
- 国标《电力储能用锂离子电池监造导则》
- 涉警网络负面舆情应对与处置策略
评论
0/150
提交评论