湖南省永州市祁阳一中2024届高一数学第二学期期末联考试题含解析_第1页
湖南省永州市祁阳一中2024届高一数学第二学期期末联考试题含解析_第2页
湖南省永州市祁阳一中2024届高一数学第二学期期末联考试题含解析_第3页
湖南省永州市祁阳一中2024届高一数学第二学期期末联考试题含解析_第4页
湖南省永州市祁阳一中2024届高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市祁阳一中2024届高一数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图的程序框图,则输出的λ是()A.-2 B.-4 C.0 D.-2或02.已知函数的部分图象如图所示,则()A. B.C. D.3.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是,则下列叙述正确的是()A.,乙比甲成绩稳定B.,甲比乙成绩稳定C.,乙比甲成绩稳定D.,甲比乙成绩稳定4.在锐角中,内角,,所对的边分别为,,,若的面积为,且,则的周长的取值范围是A. B.C. D.5.两个正实数满足,则满足,恒成立的取值范围()A. B. C. D.6.若三棱锥的四个面都为直角三角形,平面,,,则三棱锥中最长的棱长为()A. B. C. D.7.过点,且圆心在直线上的圆的方程是()A. B.C. D.8.已知,两条不同直线与的交点在直线上,则的值为()A.2 B.1 C.0 D.-19.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.10.已知,则的最小值为()A.2 B.0 C.-2 D.-4二、填空题:本大题共6小题,每小题5分,共30分。11.在边长为2的正△ABC所在平面内,以A为圆心,为半径画弧,分别交AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.12.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____13.等差数列中,则此数列的前项和_________.14.若点为圆的弦的中点,则弦所在的直线的方程为___________.15.已知等差数列中,,则_______16.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的正半轴重合,终边分别与单位圆交于,两点,且.(1)求的值;(2)若点的横坐标为,求的值.18.已知函数,(1)若,求a的值,并判断的奇偶性;(2)求不等式的解集.19.已知函数(其中,)的最小正周期为.(1)求的值;(2)如果,且,求的值.20.已知数列的通项公式为.(1)求这个数列的第10项;(2)在区间内是否存在数列中的项?若有,有几项?若没有,请说明理由.21.某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:14712229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

根据框图有,由判断条件即即可求出的值.【题目详解】由有.根据输出的条件是,即.所以,解得:.故选:A【题目点拨】本题考查程序框图和向量的加法以及数量积以及性质,属于中档题.2、D【解题分析】

由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得出结论.【题目详解】根据函数的图象求出函数的周期,然后可以求出,通过函数经过的最大值点求出值,即可得到函数的解析式.由函数的图象可知:,

.

当,函数取得最大值1,所以,

故选D.3、C【解题分析】甲的平均成绩,甲的成绩的方差;乙的平均成绩,乙的成绩的方差.∴,乙比甲成绩稳定.故选C.4、C【解题分析】

首先根据面积公式和余弦定理可将已知变形为,,然后根据正弦定理,将转化为,利用,化简为,再根据三角形是锐角三角形,得到的范围,转化为三角函数求取值范围的问题.【题目详解】因为的面积为,所以,所以,由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【题目点拨】本题考查了正余弦定理和三角形面积公式,以及辅助角公式和三角函数求取值范围的问题,属于中档题型,本题需认真审题,当是锐角三角形时,需满足三个角都是锐角,即.5、B【解题分析】

由基本不等式和“1”的代换,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范围。【题目详解】由,,可得,当且仅当上式取得等号,若恒成立,则有,解得.故选:B【题目点拨】本题考查利用基本不等式求恒成立问题中的参数取值范围,是常考题型。6、B【解题分析】

根据题意,画出满足题意的三棱锥,求解棱长即可.【题目详解】因为平面,故,且,则为直角三角形,由以及勾股定理得:;同理,因为则为直角三角形,由,以及勾股定理得:;在保证和均为直角三角形的情况下,①若,则在中,由勾股定理得:,此时在中,由,及,不满足勾股定理故当时,无法保证为直角三角形.不满足题意.②若,则,又因为面ABC,面ABC,则,故面PAB,又面PAB,故,则此时可以保证也为直角三角形.满足题意.③若,在直角三角形BCA中,斜边AB=2,小于直角边AC=,显然不成立.综上所述:当且仅当时,可以保证四棱锥的四个面均为直角三角形,故作图如下:由已知和勾股定理可得:,显然,最长的棱为.故选:B.【题目点拨】本题表面考查几何体的性质,以及棱长的计算,涉及线面垂直问题,需灵活应用.7、C【解题分析】

直接根据所给信息,利用排除法解题。【题目详解】本题作为选择题,可采用排除法,根据圆心在直线上,排除B、D,点在圆上,排除A故选C【题目点拨】本题考查利用排除法选出圆的标准方程,属于基础题。8、C【解题分析】

联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【题目详解】交点在直线上观察分母和不是恒相等故故答案选C【题目点拨】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.9、B【解题分析】

由异面直线所成角的定义及求法,得到为所求,连接,由为直角三角形,即可求解.【题目详解】在四棱锥中,,可得即为异面直线与所成角,连接,则为直角三角形,不妨设,则,所以,故选B.【题目点拨】本题主要考查了异面直线所成角的作法及求法,其中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解题分析】

根据不等式组画出可行域,借助图像得到最值.【题目详解】根据不等式组画出可行域得到图像:将目标函数化为,根据图像得到当目标函数过点时取得最小值,代入此点得到z=-4.故答案为:D.【题目点拨】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由三角形ABC的边长为2不难求出三角形ABC的面积,又由扇形的半径为,也可以求出扇形的面积,代入几何概型的计算公式即可求出答案.【题目详解】由题意知,在△ABC中,BC边上的高AO正好为,∴圆与边CB相切,如图.S扇形=×××=,S△ABC=×2×2×=,∴P==.【题目点拨】本题考查面积型几何概型概率的求法,属基础题.12、【解题分析】

以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【题目详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【题目点拨】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.13、180【解题分析】由,,可知.14、;【解题分析】

利用垂径定理,即圆心与弦中点连线垂直于弦.【题目详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【题目点拨】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).15、【解题分析】

设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【题目详解】设等差数列的公差为,则,因此,,故答案为:。【题目点拨】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。16、【解题分析】

由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1;(2)【解题分析】

(1)用表示出,然后利用诱导公式化简所求表达式,求得表达式的值.(2)根据点的横坐标即的值,求得的值,根据诱导公式求得的值,由此利用两角和与差的正弦公式,化简求得的值.【题目详解】解:(1)∵∴,∴(2)由已知点的横坐标为∴,,【题目点拨】本小题主要考查三角函数的定义,考查利用诱导公式化简求值,考查两角和与差的正弦公式以及同角三角函数的基本关系式,考查运算求解能力,属于中档题.18、(1),,是偶函数(2)或【解题分析】

(1)先由已知求出,然后结合利用定义法判断函数的奇偶性即可;(2)讨论当时,当时对数函数的单调性求解不等式即可.【题目详解】解:(1)由题意得,,即,则,,则,函数的定义域为,则,是偶函数;(2)当时,在上是减函数,,,解得,所以原不等式的解集为;当时,在上是增函数,,,即,所以原不等式的解集为,综上所述,当时,原不等式的解集为,当时,原不等式的解集为.【题目点拨】本题考查了利用定义法判断函数的奇偶性,主要考查了利用对数函数的单调性求解不等式,重点考查了分类讨论的数学思想方法,属中档题.19、(1)(2)【解题分析】

(1)先根据二倍角余弦公式化简,再根据余弦函数性质求解(2)先求得,再根据两角差余弦公式求解【题目详解】解:(1)因为.所以,因为,所以.(2)由(1)可知,所以,因为,所以,所以.因为.所以.【题目点拨】本题考查二倍角余弦公式、两角差余弦公式以及余弦函数性质,考查基本分析求解能力,属基础题20、(1)(2)只有一项【解题分析】

(1)根据通项公式直接求解(2)根据条件列不等式,解得结果【题目详解】解:(1);(2)解不等式得,因为为正整数,所以,因此在区间内只有一项.【题目点拨】本题考查数列通项公式及其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论