版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽舒城桃溪中学高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789ABCDEF10进制0123456789101112131415现在,将十进制整数2019化成16进制数为()A.7E3 B.7F3 C.8E3 D.8F32.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.463.若且,则下列不等式成立的是()A. B. C. D.4.已知tan(α+π5A.1B.-57C.5.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:()A.①③ B.①④ C.②③ D.②④6.在△中,点是上一点,且,是中点,与交点为,又,则的值为()A. B. C. D.7.若函数在一个周期内的图象如图所示,且在轴上的截距为,分别是这段图象的最高点和最低点,则在方向上的投影为()A. B. C. D.8.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是()A.nmB.2nmC.3n9.圆与圆的位置关系为()A.内切 B.相交 C.外切 D.相离10.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.若是方程的解,其中,则________.12.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.13.已知向量,,且,点在圆上,则等于.14.已知变量,满足,则的最小值为________.15.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______16.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列和中,数列的前n项和为,若点在函数的图象上,点在函数的图象上.设数列.(1)求数列的通项公式;(2)求数列的前项和;(3)求数列的最大值.18.已知向量(1)求函数的单调递减区间;(2)在中,,若,求的周长.19.已知向量.(1)若向量,且,求的坐标;(2)若向量与互相垂直,求实数的值.20.已知集合,其中,由中的元素构成两个相应的集合:,.其中是有序数对,集合和中的元素个数分别为和.若对于任意的,总有,则称集合具有性质.(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.(Ⅱ)对任何具有性质的集合,证明.(Ⅲ)判断和的大小关系,并证明你的结论.21.已知,函数(其中),且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式;(2)求函数的单调增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
通过竖式除法,用2019除以16,取其余数,再用商除以16,取其余数,直至商为零,将余数逆着写出来即可.【题目详解】用2019除以16,得余数为3,商为126;用126除以16,得余数为14,商为7;用7除以16,得余数为7,商为0;将余数3,14,7逆着写,即可得7E3.故选:A.【题目点拨】本题考查进制的转化,只需按照流程执行即可.2、A【解题分析】
模拟程序运行即可.【题目详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【题目点拨】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.3、D【解题分析】
利用不等式的性质对四个选项逐一判断.【题目详解】选项A:,符合,但不等式不成立,故本选项是错误的;选项B:当符合已知条件,但零没有倒数,故不成立,故本选项是错误的;选项C:当时,不成立,故本选项是错误的;选项D:因为,所以根据不等式的性质,由能推出,故本选项是正确的,因此本题选D.【题目点拨】本题考查了不等式的性质,结合不等式的性质,举特例是解决这类问题的常见方法.4、D【解题分析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=5、C【解题分析】
根据中位数,平均数,方差的概念计算比较可得.【题目详解】甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.【题目点拨】本题考查了茎叶图,属基础题.平均数即为几个数加到一起除以数据的个数得到的结果.6、D【解题分析】试题分析:因为三点共线,所以可设,又,所以,,将它们代入,即有,由于不共线,从而有,解得,故选择D.考点:向量的基本运算及向量共线基本定理.7、D【解题分析】
根据图象求出函数的解析式,然后求出点的坐标,进而可得所求结果.【题目详解】根据函数在一个周期内的图象,可得,∴.再根据五点法作图可得,∴,∴函数的解析式为.∵该函数在y轴上的截距为,∴,∴,故函数的解析式为.∴,∴,又,∴向量在方向上的投影为.故选D.【题目点拨】解答本题的关键有两个:一是正确求出函数的解析式,进而得到两点的坐标,此处要灵活运用“五点法”求出的值;二是注意一个向量在另一个向量方向上的投影的概念,属于基础题.8、B【解题分析】试题分析:设正方形的边长为2.则圆的半径为2,根据几何概型的概率公式可以得到mn=4考点:几何概型.【方法点睛】本题題主要考查“体积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总体积(总空间)以及事件的体积(事件空间);几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.9、B【解题分析】试题分析:两圆的圆心距为,半径分别为,,所以两圆相交.故选C.考点:圆与圆的位置关系.10、D【解题分析】
直接利用正弦定理得到,带入化简得到答案.【题目详解】正弦定理:即:故选D【题目点拨】本题考查了正弦定理,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】
将代入方程,化简结合余弦函数的性质即可求解.【题目详解】由题意可得:,即所以或又所以或故答案为:或【题目点拨】本题主要考查了三角函数求值问题,属于基础题.12、【解题分析】
分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【题目详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【题目点拨】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.13、【解题分析】试题分析:因为且在圆上,所以,解得,所以.考点:向量运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.14、0【解题分析】
画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【题目详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【题目点拨】本题主要考查了简单的线性规划,属于中档题.15、【解题分析】
首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【题目详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【题目点拨】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.16、【解题分析】
考查等价转化能力和分析问题的能力,等比数列的通项,有连续四项在集合,四项成等比数列,公比为,=-9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】
(1)先根据题设知,再利用求得,验证符合,最后答案可得.
(2)由题设可知,把代入,然后用错位相减法求和;(3)计算,判断其大于零时的范围,可得数列取最大值时的项数,进而可得最大值..【题目详解】解:(1)由已知得:,∵当时,,又当时,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即为最大,故最大值为.【题目点拨】本题主要考查了数列的递推式解决数列的通项公式和求和问题,考查数列最大项的求解,是中档题.18、(1);(2)【解题分析】
(1)根据向量的数量积公式、二倍角公式及辅助角公式将化简为,然后利用三角函数的性质,即可求得的单调减区间;(2)由(1)及可求得,由可得,再结合余弦定理即可求得,进而可得的周长.【题目详解】解:(1)所以函数的单调递减区间为:(2),,又因在中,,,设的三个内角所对的边分别为,又,且,,则,所以的周长为.【题目点拨】本题考查平面向量的数量积公式,三角函数的二倍角公式、辅助角公式和三角函数的性质,以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解运算能力,属于中档题.19、(1)或(2)【解题分析】
(1)因为,所以可以设求出坐标,根据模长,可以得到参数的方程.(2)由于已知条件可以计算出与坐标(含有参数)而两向量垂直,可以得到关于的方程,完成本题.【题目详解】(1)法一:设,则,所以解得所以或法二:设,因为,,所以,因为,所以解得或,所以或(2)因为向量与互相垂直所以,即而,,所以,因此,解得【题目点拨】考查了向量的线性表示,引入参数,只要我们能建立起引入参数的方程,则就能计算出所求参数值,从而完成本题.20、(Ⅰ)集合不具有性质,集合具有性质,相应集合,,集合,(Ⅱ)见解析(Ⅲ)【解题分析】解:集合不具有性质.集合具有性质,其相应的集合和是,.(II)证明:首先,由中元素构成的有序数对共有个.因为,所以;又因为当时,时,,所以当时,.从而,集合中元素的个数最多为,即.(III)解:,证明如下:(1)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立.故与也是的不同元素.可见,中元素的个数不多于中元素的个数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 柳州职业技术学院《动画剧本与分镜设计》2023-2024学年第一学期期末试卷
- 江西中医药大学《画法几何与土建制图》2023-2024学年第一学期期末试卷
- 新苏教版一年级下册数学第1单元第1课时《9加几》教案
- 华侨大学《思想道德修养》2023-2024学年第一学期期末试卷
- 湖北科技职业学院《Web应用与开发》2023-2024学年第一学期期末试卷
- 河南中医药大学《音乐基础理论2》2023-2024学年第一学期期末试卷
- 重庆轻工职业学院《办公空间设计》2023-2024学年第一学期期末试卷
- 驻马店职业技术学院《马克思主义中国化》2023-2024学年第一学期期末试卷
- 浙江万里学院《金融风险分析师(FRM)专题(双语)》2023-2024学年第一学期期末试卷
- 浙江工贸职业技术学院《证券投资常识》2023-2024学年第一学期期末试卷
- 开展课外读物负面清单管理的具体实施举措方案
- 中国骨关节炎诊疗指南(2024版)解读
- 2025年内蒙古包钢集团公司招聘笔试参考题库含答案解析
- 企业内训师培训师理论知识考试题库500题(含各题型)
- 2025年云南中烟工业限责任公司招聘420人高频重点提升(共500题)附带答案详解
- 2024年山西省晋中市公开招聘警务辅助人员(辅警)笔试专项训练题试卷(2)含答案
- 2023九年级历史上册 第二单元 5《罗马城邦和罗马帝国》教学实录 新人教版
- 仁爱英语八年级上册词汇练习题全册
- 报价单模板及范文(通用十二篇)
- 钣金部品质控制计划
- 标准内包骨架油封规格及公差
评论
0/150
提交评论