玉林市重点中学2024届数学高一第二学期期末考试试题含解析_第1页
玉林市重点中学2024届数学高一第二学期期末考试试题含解析_第2页
玉林市重点中学2024届数学高一第二学期期末考试试题含解析_第3页
玉林市重点中学2024届数学高一第二学期期末考试试题含解析_第4页
玉林市重点中学2024届数学高一第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

玉林市重点中学2024届数学高一第二学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则和的值分别为A.5,5 B.3,5 C.3,7 D.5,72.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.3.等差数列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.4.直线过且在轴与轴上的截距相等,则的方程为()A. B.C.和 D.5.若实数满足不等式组,则的最小值是()A. B.0 C.1 D.26.若,则的最小值为()A. B. C. D.7.在的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A,B两点,那么这两个切点在球面上的最短距离为()A. B. C. D.8.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1209.已知,则下列不等式成立的是()A. B. C. D.10.体积为的正方体的顶点都在同一球面上,则该球面的表面积为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.12.在中,,,是角,,所对应的边,,,如果,则________.13.设,则的值是____.14.若一组样本数据,,,,的平均数为,则该组样本数据的方差为15.方程的解集是___________16.已知是内的一点,,,则_______;若,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.18.假设关于某设备的使用年限x和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y与x是否呈线性相关关系(2)若y与x呈线性相关关系,求线性回归方程的回归系数,(3)估计使用年限为10年时,维修费用是多少?参考公式及相关数据:19.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?20.某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.21.在如图所示的直角梯形中,,求该梯形绕上底边所在直线旋转一周所形成几何体的表面积和体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

利用茎叶图、中位数、平均数的性质直接求解.【题目详解】由茎叶图得:∵甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故选B.【题目点拨】本题考查实数值的求法,考查茎叶图、中位数、平均数的性质等基础知识,考查运算求解能力,是基础题.2、D【解题分析】

设,对比得到答案.【题目详解】设,则故答案为D【题目点拨】本题考查了向量的计算,意在考查学生的计算能力.3、A【解题分析】试题分析:由已知得,a42=a2⋅a8,又因为{an}【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.4、B【解题分析】

对直线是否过原点分类讨论,若直线过原点满足题意,求出方程;若直线不过原点,在轴与轴上的截距相等,且不为0,设直线方程为将点代入,即可求解.【题目详解】若直线过原点方程为,在轴与轴上的截距均为0,满足题意;若直线过原点,依题意设方程为,代入方程无解.故选:B.【题目点拨】本题考查直线在上的截距关系,要注意过原点的直线在轴上的截距是轴上的截距的任意倍,属于基础题.5、A【解题分析】

画出不等式组的可行域,再根据线性规划的方法,结合的图像与的关系判定最小值即可.【题目详解】画出可行域,又求最小值时,故的图形与可行域有交点,且往上方平移到最高点处.易得此时在处取得最值.故选:A【题目点拨】本题主要考查了线性规划与绝对值函数的综合运用,需要根据题意画图,根据函数的图形性质分析.属于中档题.6、D【解题分析】

根据对数运算可求得且,,利用基本不等式可求得最小值.【题目详解】由得:且,(当且仅当时取等号)本题正确选项:【题目点拨】本题考查利用基本不等式求解和的最小值的问题,关键是能够利用对数运算得到积的定值,属于基础题.7、A【解题分析】

根据题意,作出截面图,计算弧长即可.【题目详解】根据题意,作出该球过球心且经过A、B的截面图如下所示:由题可知:则,故满足题意的最短距离为弧长BA,在该弧所在的扇形中,弧长.故选:A.【题目点拨】本题考查弧长的计算公式,二面角的定义,属综合基础题.8、B【解题分析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图9、D【解题分析】

利用排除法,取,,可排除错误选项,再结合函数的单调性,可证明D正确.【题目详解】取,,可排除A,B,C,由函数是上的增函数,又,所以,即选项D正确.故选:D.【题目点拨】本题考查不等式的性质,考查学生的推理论证能力,属于基础题.10、A【解题分析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以该球的表面积为,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别为、和.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】

由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【题目详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【题目点拨】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.12、【解题分析】

首先利用同角三角函数的基本关系求出,再利用正弦定理即可求解.【题目详解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案为:【题目点拨】本题考查了同角三角函数的基本关系以及正弦定理解三角形,需熟记公式,属于基础题.13、【解题分析】

根据二倍角公式得出,再根据诱导公式即可得解.【题目详解】解:由题意知:故,即.故答案为.【题目点拨】本题考查了二倍角公式和诱导公式的应用,属于基础题.14、【解题分析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.15、或【解题分析】

方程的根等价于或,分别求两个三角方程的根可得答案.【题目详解】方程或,所以或,所以或.故答案为:或.【题目点拨】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.16、【解题分析】

对式子两边平方,再利用向量的数量积运算即可;式子两边分别与向量,进行数量积运算,得到关于的方程组,解方程组即可得答案.【题目详解】∵,∴;∵,∴解得:,∴.故答案为:;.【题目点拨】本题考查向量数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将向量等式转化为数量关系的方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II);(III)【解题分析】

(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题意,由x的值可得的坐标,由向量的坐标计算公式可得、和的值,结合,计算可得答案.解:(I)∵与共线,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.18、(1)见解析;(2),;(3)12.38万元【解题分析】

(1)在坐标系中画出5个离散的点;(2)利用最小二乘法求出,再利用回归直线过散点图的中心,求出;(3)将代入(2)中的回归直线方程,求得.【题目详解】(1)散点图如下:所以从散点图年,它们具有线性相关关系.(2),,于是有,.(3)回归直线方程是当时,(万元),即估计使用年限为10年时,维修费用是万元.【题目点拨】本题考查散点图的作法、最小二乘法求回归直线方程及利用回归直线预报当时,的值,考查数据处理能力.19、(1)不能获利,政府每月至少补贴元;(2)每月处理量为吨时,平均成本最低.【解题分析】

(1)利用:(生物的柴油总价值)(对应段的月处理成本)利润,根据利润的正负以及大小来判断是否需要补贴,以及补贴多少;(2)考虑:(月处理成本)(月处理量)每吨的平均处理成本,即为,计算的最小值,注意分段.【题目详解】(1)当时,该项目获利为,则∴当时,,因此,该项目不会获利当时,取得最大值,所以政府每月至少需要补贴元才能使该项目不亏损;(2)由题意可知,生活垃圾每吨的平均处理成本为:当时,所以当时,取得最小值;当时,当且仅当,即时,取得最小值因为,所以当每月处理量为吨时,才能使每吨的平均处理成本最低.【题目点拨】本题考查分段函数模型的实际运用,难度一般.(1)实际问题在求解的时候注意定义域问题;(2)利用基本不等式求解最值的时候,注意说明取等号的条件.20、(1)42;(2)78;(3)平均数为7.4,方差为2.24【解题分析】

(1)根据随机数表依次读取数据即可,取01~80之间的数据;(2)根据系统抽样,确定组矩,计算可得;(3)根据平均数和方差得出数据的整体关系,整体代入求解10名选手的平均数和方差.【题目详解】(1)根据题意读取的编号依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,所以抽取的第6个观众的编号为42;(2)若采用系统抽样,组矩为8,最小编号为06,则最大编号为6+9×8=78

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论