河北省唐山市2024届数学高一下期末质量跟踪监视试题含解析_第1页
河北省唐山市2024届数学高一下期末质量跟踪监视试题含解析_第2页
河北省唐山市2024届数学高一下期末质量跟踪监视试题含解析_第3页
河北省唐山市2024届数学高一下期末质量跟踪监视试题含解析_第4页
河北省唐山市2024届数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市2024届数学高一下期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果在一次实验中,测得x,y的四组数值分别是A1,3,B2,3.8,C3,5.2,D4,6,则A.y=x+1.9 B.C.y=0.95x+1.04 D.2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里3.若角的终边与单位圆交于点,则()A. B. C. D.不存在4.Rt△ABC的三个顶点都在一个球面上,两直角边的长分别为6和8,且球心O到平面ABC的距离为12,则球的半径为()A.13 B.12 C.5 D.105.正方体中,直线与所成角的余弦值为()A. B. C. D.6.当时,不等式恒成立,则实数m的取值范围是()A. B. C. D.7.在正四棱柱,,则异面直线与所成角的余弦值为A. B. C. D.8.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知等比数列中,各项都是正数,且成等差数列,则等于()A. B. C. D.10.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则使得成立的的取值范围是_______________.12.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.13.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.14.的最大值为______.15.方程在区间内解的个数是________16.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从含有两件正品和一件次品的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求:(1)一切可能的结果组成的基本事件空间.(2)取出的两件产品中恰有一件次品的概率18.某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;19.如图是函数的部分图象.(1)求函数的表达式;(2)若函数满足方程,求在内的所有实数根之和;(3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.20.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.21.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

求出样本数据的中心(2.5,4.5),依次代入选项中的回归方程.【题目详解】∵x∴样本数据的中心为(2.5,4.5),将它依次代四个选项,只有B符合,∴y与x之间的回归直线方程是y=1.04x+1.9【题目点拨】本题的考点是回归直线经过样本点的中心,而不是考查利用最小二乘法求回归直线方程.2、C【解题分析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.3、B【解题分析】

由三角函数的定义可得:,得解.【题目详解】解:在单位圆中,,故选B.【题目点拨】本题考查了三角函数的定义,属基础题.4、A【解题分析】

利用勾股定理计算出球的半径.【题目详解】的斜边长为,所以外接圆的半径为,所以球的半径为.故选:A【题目点拨】本小题主要考查勾股定理计算,考查球的半径有关计算,属于基础题.5、C【解题分析】

作出相关图形,通过平行将异面直线所成角转化为共面直线所成角.【题目详解】作出相关图形,由于,所以直线与所成角即为直线与所成角,由于为等边三角形,于是所成角余弦值为,故答案选C.【题目点拨】本题主要考查异面直线所成角的余弦值,难度不大.6、A【解题分析】

当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x)min,利用基本不等式可求得(x)min=6,从而可得实数m的取值范围.【题目详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x恒成立⇔m<(x)min,当x>0时,x26(当且仅当x=3时取“=”),因此(x)min=6,所以m<6,故选A.【题目点拨】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.7、A【解题分析】

作出两异面直线所成的角,然后由余弦定理求解.【题目详解】在正四棱柱中,则异面直线与所成角为或其补角,在中,,,.故选A.【题目点拨】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角,然后通过解三角形求之.8、D【解题分析】

根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【题目详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【题目点拨】本小题主要考查空间线、面位置关系的判断,属于基础题.9、C【解题分析】

由条件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求运算求得结果.【题目详解】∵等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故选:C.【题目点拨】本题主要考查等差中项的性质,等比数列的通项公式,考查了整体化的运算技巧,属于基础题.10、A【解题分析】

分别求出基本事件的总数和点数之和为奇数的事件总数,再由古典概型的概率计算公式求解.【题目详解】同时抛掷两枚骰子,总共有种情况,朝上的点数之和为奇数的情况有种,则所求概率为.故选:A.【题目点拨】本题考查古典概型概率的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据函数的表达式判断出函数为偶函数,判断函数在的单调性为递增,根据偶函数的对称性可得,解绝对值不等式即可.【题目详解】解:,定义域为,因为,所以函数为偶函数.当时,易知函数在为增函数,根据偶函数的性质可知:由可知,所以,解得:或.故答案为:.【题目点拨】本题考查偶函数的性质和利用偶函数对称性的特点解决问题,属于基础题.12、.【解题分析】

由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【题目详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【题目点拨】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.13、【解题分析】

设三边按递增顺序排列为,其中.则,即.解得.由q≥1知q的取值范围是1≤q<.设三边按递减顺序排列为,其中.则,即.解得.综上所述,.14、3【解题分析】

由余弦型函数的值域可求得整个函数的值域,进而得到最大值.【题目详解】,即故答案为:【题目点拨】本题考查含余弦型函数的值域的求解问题,关键是明确在自变量无范围限制时,余弦型函数的值域为.15、4.【解题分析】分析:通过二倍角公式化简得到,进而推断或,进而求得结果.详解:,所以或,因为,所以或或或,故解的个数是4.点睛:该题考查的是有关方程解的个数问题,在解题的过程中,涉及到的知识点有正弦的倍角公式,方程的求解问题,注意一定不要两边除以,最后求得结果.16、-1【解题分析】

根据三角函数的定义求得,再代入的展开式进行求值.【题目详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【题目点拨】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)和;(2)【解题分析】

(1)注意先后顺序以及是不放回的抽取;(2)在所有可能的事件中寻找符合要求的事件,然后利用古典概型概率计算公式求解即可.【题目详解】(1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即和其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品(2)用A表示“取出的两种中,恰好有一件次品”这一事件,则∴事件A由4个基本事件组成,因而,=.【题目点拨】本题考查挂古典概型的基本概率计算,难度较易.对于放回或不放回的问题,一定要注意区分其中的不同.18、(1)0.4(2)【解题分析】

(1)从频率分布直方图中计算出前四组矩形面积之和,即为所求概率;(2)列举出全部的基本事件,并确定出基本事件的总数,然后从中找出事件“至少有名骑手选择方案(1)”所包含的基本事件数,最后利用古典概型的概率公式可计算出结果。【题目详解】(1)设事件为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于单”依题意,连锁店的人均日快递业务量不少于单的频率分别为:因为所以估计为;(2)设事件为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)”从四名新聘骑手中随机选取2名骑手,有6种情况,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名骑手选择方案()的情况为{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以。【题目点拨】本题考查频率分布直方图以及古典概型概率的计算,在频率分布直方图的问题中要注意:(1)每组矩形的面积等于该组数据的频率;(2)所有矩形的面积之和为。19、(1)(2)答案不唯一,具体见解析(3)【解题分析】

(1)根据图像先确定A,再确定,代入一个特殊点再确定.(2)根据(1)的结果结合图像即可解决.(3)根据(1)的结果以及三角函数的变换求出即可解决.【题目详解】解:(Ⅰ)由图可知:,即,又由图可知:是五点作图法中的第三点,,即.(Ⅱ)因为的周期为,在内恰有个周期.⑴当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;⑵当时,方程在内有个实根为,故所有实数根之和为;⑶当时,方程在内有个实根,设为,结合图像知,故所有实数根之和为;综上:当时,方程所有实数根之和为;当时,方程所有实数根之和为;(Ⅲ),函数的图象如图所示:则当图象伸长为原来的倍以上时符合题意,所以.【题目点拨】本题主要考查了正弦函数的变换,根据图像确定函数,方程与函数.在解决方程问题时往往转化成两个函数图像交点的问题解决.本题属于中等题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论