版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市第二中学2024届数学高一第二学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为成等比数列,且,则等于()A. B. C. D.2.已知直线,平面,且,下列条件中能推出的是()A. B. C. D.与相交3.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.64.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.5.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.76.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B. C. D.7.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.8.中,已知,则角()A.90° B.105° C.120° D.135°9.中,,则()A.5 B.6 C. D.810.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.12.把“五进制”数转化为“十进制”数是_____________13.定义为数列的均值,已知数列的均值,记数列的前项和是,若对于任意的正整数恒成立,则实数k的取值范围是________.14.若,则________.15.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.16.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且(1)当时,解不等式;(2)在恒成立,求实数的取值范围.18.中,角的对边分别为,且.(I)求角的大小;(II)若,求的最小值.19.某高校自主招生一次面试成绩的茎叶图和频率分布直方图均收到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:(1)求参加此次高校自主招生面试的总人数、面试成绩的中位数及分数在内的人数;(2)若从面试成绩在内的学生中任选三人进行随机复查,求恰好有二人分数在内的概率.20.数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比及假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为及,不考虑其它因素的影响.(1)用表示,并求实数使是等比数列;(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:)21.已知数列满足:.(1)求证:数列为等差数列,并求;(2)记,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
成等比数列,可得,又,可得,利用余弦定理即可得出.【题目详解】解:成等比数列,,又,,则故选B.【题目点拨】本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.2、C【解题分析】
根据线面垂直的性质,逐项判断即可得出结果.【题目详解】A中,若,由,可得;故A不满足题意;B中,若,由,可得;故B不满足题意;C中,若,由,可得;故C正确;D中,若与相交,由,可得异面或平,故D不满足题意.故选C【题目点拨】本题主要考查线面垂直的性质,熟记线面垂直的性质定理即可,属于常考题型.3、D【解题分析】
去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【题目详解】平均数,方差,选D.【题目点拨】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.4、A【解题分析】
由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【题目详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【题目点拨】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.5、D【解题分析】
根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【题目详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【题目点拨】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.6、A【解题分析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A7、D【解题分析】
由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【题目详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【题目点拨】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.8、C【解题分析】
由诱导公式和两角差的正弦公式化简已知不等式可求得关系,求出后即可求得.【题目详解】,∴,是三角形内角,,,则由得,∴,从而.故选:C.【题目点拨】本题考查两角差的正弦公式和诱导公式,考查正弦函数性质.已知三角函数值只要确定了角的范围就可求角.9、D【解题分析】
根据余弦定理,可求边长.【题目详解】,代入数据,化解为解得或(舍)故选D.【题目点拨】本题考查了已知两边及其一边所对角,求另一边,这种题型用余弦定理,属于基础题型.10、A【解题分析】
将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【题目详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【题目点拨】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.考点:直线和圆的位置关系.12、194【解题分析】由.故答案为:194.13、【解题分析】
因为,,从而求出,可得数列为等差数列,记数列为,从而将对任意的恒成立化为,,即可求得答案.【题目详解】,,故,,则,对也成立,,则,数列为等差数列,记数列为.故对任意的恒成立,可化为:,;即,解得,,故答案为:.【题目点拨】本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.14、【解题分析】
先求,再代入求值得解.【题目详解】由题得所以.故答案为【题目点拨】本题主要考查共轭复数和复数的模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解题分析】
先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【题目详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【题目点拨】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.16、【解题分析】
求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【题目详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【题目点拨】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)当时,可得,即为,由对数函数的单调性,可得不不等式的解集;(2)由在上恒成立,得在上恒成立,讨论,根据的范围,由恒成立思想,可得的范围.试题解析:(1)当时,解不等式,得,即,故不等式的解集为.(2)由在恒成立,得在恒成立,①当时,有,得,②当时,有,得,故实数的取值范围.18、(I);(II)最小值为2.【解题分析】
(I),化简即得C的值;(II)【题目详解】(I)因为,所以;(II)由余弦定理可得,,因为,所以,当且仅当的最小值为2.【题目点拨】本题主要考查正弦定理余弦定理解三角形和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1);;(2)0.6【解题分析】
(1)从分数落在,的频率为,人数为2,求出总人数的值,从而求出面试成绩的中位数及分数在,内的人数;(2)用列举法列出所有可能结果,确定其中符合要求的事件,即可求出概率.【题目详解】(1)∵分数落在的频率为,人数为2,∴,故,∵分数在的人数为15人,∴分数在的人数为人,又∵分数在的人数为人,∴分数在的人数为人,面试成绩的中位数为分;(2)由(1)知分数在的有5人,分数在内的有3人,记分数在的5人为1,2,3,4,5号,分数在内的3人为1,2,3号,则从这5人中任选3人的基本事件为:123,124,125,134,135,145,234,235,245,345,共10种方式;其中恰有2人的分数在内的基本事件为:124,125,134,135,234,235,共6种方式,所以所求概率为.【题目点拨】本题考查频率分布直方图和茎叶图的综合应用,考查古典概型的概率求法,属于基础题.20、(1),;(2)见解析【解题分析】
(1)根据题意经过次技术更新后,通过整理得到,构造是等比数列,求出,得证;(2)由(1)可求出通项,令,通过相关计算即可求出n的最小值,从而得到答案.【题目详解】(1)由题意,可设5商用初期,该区域市场中采用H公司与G公司技术的智能终端产品的占比分别为.易知经过次技术更新后,则,①由①式,可设,对比①式可知.又.从而当时,是以为首项,为公比的等比数列.(2)由(1)可知,所以经过次技术更形后,该区域市场采用H公司技术的智能终端产品占比.由题意,令,得.故,即至少经过6次技术更新,该区域市场采用H公司技术的智能终端产品占比能达到75%以上.【题目点拨】本题主要考查数列的实际应用,等比数列的证明,数列与不等式的相关计算,综合性强,意在考查学生的阅读理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 弱电系统施工合同范本
- 地产代理合同
- 果园承包合同书
- 物流仓储设备采购及安装合同书
- 基站场地租赁合同模板年
- 工厂普通买卖合同
- 标准个人借款抵押合同模板
- 商城店面租赁合同范本
- 资产买卖合同书
- 全新临时房租赁合同
- 部编版《道德与法治》六年级下册教材分析万永霞
- 粘液腺肺癌病理报告
- 铸牢中华民族共同体意识自评报告范文
- 巡察档案培训课件
- 物流营销(第四版) 课件 第六章 物流营销策略制定
- 上海高考英语词汇手册列表
- PDCA提高患者自备口服药物正确坚持服用落实率
- 上海石油化工股份有限公司6181乙二醇装置爆炸事故调查报告
- 家谱人物简介(优选12篇)
- 2023年中智集团下属中智股份公司招聘笔试题库及答案解析
- GA 1409-2017警用服饰硬式肩章
评论
0/150
提交评论