吉林省延吉市2024届数学高一下期末学业水平测试试题含解析_第1页
吉林省延吉市2024届数学高一下期末学业水平测试试题含解析_第2页
吉林省延吉市2024届数学高一下期末学业水平测试试题含解析_第3页
吉林省延吉市2024届数学高一下期末学业水平测试试题含解析_第4页
吉林省延吉市2024届数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省延吉市2024届数学高一下期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆锥的母线长为8,底面圆周长为,则它的体积是()A. B. C. D.2.若向量,,则点B的坐标为()A. B. C. D.3.已知圆的圆心与点关于直线对称,直线与圆相交于,两点,且,则圆的半径长为()A. B. C.3 D.4.将的图像怎样移动可得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位5.2021年某省新高考将实行“”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件:“他选择政治和地理”,事件:“他选择化学和地理”,则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件6.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.7.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则8.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.49.已知函数,则A.f(x)的最小正周期为π B.f(x)为偶函数C.f(x)的图象关于对称 D.为奇函数10.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是()A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.__________.12.在等差数列中,,当最大时,的值是________.13.数列满足,则数列的前6项和为_______.14.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.15.设点是角终边上一点,若,则=____.16.已知等差数列中,首项,公差,前项和,则使有最小值的_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图是函数的部分图像,是它与轴的两个不同交点,是之间的最高点且横坐标为,点是线段的中点.(1)求函数的解析式及上的单调增区间;(2)若时,函数的最小值为,求实数的值.18.已知函数(其中,)的最小正周期为.(1)求的值;(2)如果,且,求的值.19.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.20.已知数列为等比数列,,公比,且成等差数列.(1)求数列的通项公式;(2)设,,求使的的取值范围.21.已知,是平面内两个不共线的非零向量,,,且,,三点共线.(1)求实数的值;(2)若,,求的坐标;(3)已知,在(2)的条件下,若,,,四点按逆时针顺序构成平行四边形,求点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

圆锥的底面周长,求出底面半径,然后求出圆锥的高,即可求出圆锥的体积.【题目详解】∵圆锥的底面周长为

∴圆锥的底面半径

双∵圆锥的母线长∴圆锥的高为∴圆锥的体积为故选D.【题目点拨】本题是基础题,考查计算能力,圆锥的高的求法,熟练掌握公式是解题的关键.2、B【解题分析】

根据向量的坐标运算得到,得到答案.【题目详解】,故.故选:.【题目点拨】本题考查了向量的坐标运算,意在考查学生的计算能力.3、A【解题分析】

根据题干画出简图,在直角中,通过弦心距和半径关系通过勾股定理求解即可。【题目详解】圆的圆心与点关于直线对称,所以,,设圆的半径为,如下图,圆心到直线的距离为:,,【题目点拨】直线和圆相交问题一般两种方法:第一,通过弦心距d和半径r的关系,通过勾股定理求解即可。第二,直线方程和圆的方程联立,则。两种思路,此题属于中档题型。4、C【解题分析】

因为将向左平移个单位可以得到,得解.【题目详解】解:将向左平移个单位可以得到,故选C.【题目点拨】本题考查了函数图像的平移变换,属基础题.5、A【解题分析】

事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【题目详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【题目点拨】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.6、C【解题分析】

设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【题目详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【题目点拨】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.7、D【解题分析】

A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.8、C【解题分析】

求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【题目详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【题目点拨】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.9、C【解题分析】对于函数,它的最小正周期为=4π,故A选项错误;函数f(x)不满足f(–x)=f(x),故f(x)不是偶函数,故B选项错误;令x=,可得f(x)=sin0=0,故f(x)的图象关于对称,C正确;由于f(x–)=sin(x–)=–sin(x)=–cos(x)为偶函数,故D选项错误,故选C.10、D【解题分析】由图象性质可知,,解得,故选D。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

在分式的分子和分母上同时除以,然后利用极限的性质来进行计算.【题目详解】,故答案为:.【题目点拨】本题考查数列极限的计算,解题时要熟悉一些常见的极限,并充分利用极限的性质来进行计算,考查计算能力,属于基础题.12、6或7【解题分析】

利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【题目详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【题目点拨】本题考查了等差数列的前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.13、84【解题分析】

根据分组求和法以及等差数列与等比数列前n项和公式求解.【题目详解】因为,所以.【题目点拨】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.14、【解题分析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力15、【解题分析】

根据任意角三角函数的定义,列方程求出m的值.【题目详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【题目点拨】本题考查了任意角三角函数的定义与应用问题,属于基础题.16、或【解题分析】

求出,然后利用,求出的取值范围,即可得出使得有最小值的的值.【题目详解】,令,解得.因此,当或时,取得最小值.故答案为:或.【题目点拨】本题考查等差数列前项和的最小值求解,可以利用二次函数性质求前项和的最小值,也可以转化为数列所有非正数项相加,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由点是线段的中点,可得和的坐标,从而得最值和周期,可得和,再代入顶点坐标可得,再利用整体换元可求单调区间;(2)令得到,讨论二次函数的对称轴与区间的位置关系求最值即可.【题目详解】(1)因为为中点,,所以,,则,,又因为,则所以,由又因为,则所以令又因为则单调递增区间为.(2)因为所以令,则对称轴为①当时,即时,;②当时,即时,(舍)③当时,即时,(舍)综上可得:.【题目点拨】本题主要考查了利用三角函数的图象求解三角函数的解析式及二次函数轴动区间定的最值问题,考查了学生的分类讨论思想及计算能力,属于中档题.18、(1)(2)【解题分析】

(1)先根据二倍角余弦公式化简,再根据余弦函数性质求解(2)先求得,再根据两角差余弦公式求解【题目详解】解:(1)因为.所以,因为,所以.(2)由(1)可知,所以,因为,所以,所以.因为.所以.【题目点拨】本题考查二倍角余弦公式、两角差余弦公式以及余弦函数性质,考查基本分析求解能力,属基础题19、(1)(2)不存在(3)1【解题分析】

(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分20、(1);(2)【解题分析】

(1)利用等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得数列的通项公式.(2)先求得的表达式,利用裂项求和法求得,解不等式求得的取值范围.【题目详解】解:(1)∵成等差数列,得,∵等比数列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【题目点拨】本小题主要考查等差中项的性质,考查等比数列基本量的计算,考查裂项求和法,考查不等式的解法,属于中档题.21、(1);(2);(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论