版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省临泉县第一中学数学高一第二学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最小正周期为()A. B. C. D.2.已知函数(,)的图象的相邻两条对称轴之间的距离为,将函数的图象向右平移()个单位长度后得到函数的图象,若,的图象都经过点,则的一个可能值是()A. B. C. D.3.已知,且,则()A. B.7 C. D.4.已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B.3 C. D.45.若数列满足,,则()A. B. C.18 D.206.给定函数:①;②;③;④,其中奇函数是()A.① B.② C.③ D.④7.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与原正方体体积的比值为()A. B. C. D.8.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A.函数的最小正周期是B.函数的图象关于点成中心对称C.函数在单调递增D.函数的图象向右平移后关于原点成中心对称9.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.10.已知的三个内角之比为,那么对应的三边之比等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.12.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.13.设是等差数列的前项和,若,则________14.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____15.已知等比数列中,,,则该等比数列的公比的值是______.16.若集合,,则集合________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:(1)(2)(3)18.在中,内角,,所对的边分别为,,且.(1)求角的大小;(2)若,,求的面积.19.求过点且与圆相切的直线方程.20.正项数列的前项和满足.(I)求的值;(II)证明:当,且时,;(III)若对于任意的正整数,都有成立,求实数的最大值.21.已知.(1)求函数的最小正周期及值域;(2)求方程的解.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】,函数的最小正周期为,选.【题目点拨】求三角函数的最小正周期,首先要利用三角公式进行恒等变形,化简函数解析式,把函数解析式化为的形式,然后利用周期公式求出最小正周期,另外还要注意函数的定义域.2、D【解题分析】由函数的图象的相邻两条对称轴之间的距离为,得函数的最小正周期为,则,所以函数,的图象向右平移个单位长度,得到的图象,以为的图象都经过点,所以,又,所以,所以,所以或,所以或,因为,所以结合选项可知得一个可能的值为,故选D.3、D【解题分析】
由平方关系求得,再由商数关系求得,最后由两角和的正切公式可计算.【题目详解】,,,,.故选:D.【题目点拨】本题考查两角和的正切公式,考查同角间的三角函数关系.属于基础题.4、C【解题分析】
由平均数公式求得原有7个数的和,可得新的8个数的平均数,由于新均值和原均值相等,因此由方差公式可得新方差.【题目详解】因为7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的平均数为,方差为,由平均数和方差的计算公式可得,.故选:C.【题目点拨】本题考查均值与方差的概念,掌握均值与方差的计算公式是解题关键.5、A【解题分析】
首先根据题意得到:是以首项为,公差为的等差数列.再计算即可.【题目详解】因为,所以是以首项为,公差为的等差数列.,.故选:A【题目点拨】本题主要考查等差数列的定义,熟练掌握等差数列的表达式是解题的关键,属于简单题.6、D【解题分析】试题分析:,知偶函数,,知非奇非偶,知偶函数,,知奇函数.考点:函数奇偶性定义.7、C【解题分析】
根据三视图还原出几何体,得到是在正方体中,截去四面体,利用体积公式,求出其体积,然后得到答案.【题目详解】根据三视图还原出几何体,如图所述,得到是在正方体中,截去四面体设正方体的棱长为,则,故剩余几何体的体积为,所以截去部分的体积与剩余部分的体积的比值为.故选:C.【题目点拨】本题考查了几何体的三视图求几何体的体积;关键是正确还有几何体,利用体积公式解答,属于简单题.8、B【解题分析】
根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.【题目详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.【题目点拨】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.9、D【解题分析】
根据平均数和方差的公式,可推导出,,,的平均数和方差.【题目详解】因为,所以,所以的平均数为;因为,所以,故选:D.【题目点拨】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.10、D【解题分析】∵已知△ABC的三个内角之比为,∴有,再由,可得,故三内角分别为.再由正弦定理可得三边之比,故答案为点睛:本题考查正弦定理的应用,结合三角形内角和等于,很容易得出三个角的大小,利用正弦定理即出结果二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【题目详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【题目点拨】本题考查斜二测画法的规则,考查基本识图、作图能力.12、【解题分析】
根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【题目详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【题目点拨】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.13、5【解题分析】
由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【题目详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【题目点拨】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【题目详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【题目点拨】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.15、【解题分析】
根据等比通项公式即可求解【题目详解】故答案为:【题目点拨】本题考查等比数列公比的求解,属于基础题16、【解题分析】由题意,得,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】
利用诱导公式,对每一道题目进行化简求值.【题目详解】(1)原式.(2)原式.(3)原式.【题目点拨】在使用诱导公式时,注意“奇变偶不变,符号看象限”法则的应用,即辅助角为的奇数倍,函数名要改变;若为的偶数倍,函数名不改变.18、(1)(2)【解题分析】
(1)由正弦定理以及两角差的余弦公式得到,由特殊角的三角函数值得到结果;(2)结合余弦定理和面积公式得到结果.【题目详解】(1)由正弦定理得,∵,∴,即,∴又∵,∴.(2)∵∴.∴,∴.【题目点拨】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19、直线方程为或【解题分析】
当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【题目详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【题目点拨】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。20、(I);(II)见解析;(III)的最大值为1【解题分析】
(I)直接令中的n=1即得的值;(II)由题得时,,化简即得证;(III)用累加法可得:,再利用项和公式求得,再求的范围得解.【题目详解】(I)(II)因为,所以时,,化简得:;(III)因为,用累加法可得:,由,得,当时,上式也成立,因为,则,所以是单调递减数列,所以,又因为,所以,即,的最大值为1.【题目点拨】本题主要考查项和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政府采购合同协议的解除条件和程序
- 多功能粘合剂购销合同
- 门票预售合同补充协议
- 正规借款合同模板范文
- 借条协议书示例
- 中移合作合同解读
- 中小学开学第一课352
- 高中生化学元素周期表故事征文
- 二手房房屋买卖合同协议
- 部编版《道德与法治》六年级下册第3课《学会反思》精美课件
- 2024年度餐饮店合伙人退出机制与财产分割协议2篇
- 《招商银行转型》课件
- 灵新煤矿职业病危害告知制度范文(2篇)
- 2024年护校队安全工作制度(3篇)
- 安全生产知识负责人复习题库(附参考答案)
- 2024年安徽省广播电视行业职业技能大赛(有线广播电视机线员)考试题库(含答案)
- 大学英语-高职版(湖南环境生物职业技术学院)知到智慧树答案
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 糖尿病酮酸症中毒
- 2025北京语言大学新编长聘人员招聘21人笔试模拟试题及答案解析
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
评论
0/150
提交评论