湖南雅礼中学2024届数学高一下期末预测试题含解析_第1页
湖南雅礼中学2024届数学高一下期末预测试题含解析_第2页
湖南雅礼中学2024届数学高一下期末预测试题含解析_第3页
湖南雅礼中学2024届数学高一下期末预测试题含解析_第4页
湖南雅礼中学2024届数学高一下期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南雅礼中学2024届数学高一下期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是()A.B.甲得分的方差是736C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差2.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为().A. B.2 C. D.3.已知集合,,则A. B. C. D.4.若实数满足,则的大小关系是:A. B. C. D.5.已知圆,由直线上一点向圆引切线,则切线长的最小值为()A.1 B.2 C. D.6.已知函数的零点是和(均为锐角),则()A. B. C. D.7.已知直线经过点,且与直线垂直,则的方程为()A. B.C. D.8.已知数列满足,,,则的值为()A.12 B.15 C.39 D.429.等比数列的前项和为,,且成等差数列,则等于()A. B. C. D.10.已知是定义在上的奇函数,且当时,,那么()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.两圆,相切,则实数=______.12.数列是等比数列,,,则的值是________.13.若等差数列的前项和,且,则______________.14.在《九章算术·商功》中将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),在如下图所示的鳖臑中,,,,则的直角顶点为______.15.已知数列{an}的前n项和为Sn,满足:a2=2a1,且Sn=+1(n≥2),则数列{an}的通项公式为_______.16.在平面直角坐标系中,已知圆:,圆:,动点在直线:上(),过分别作圆,的切线,切点分别为,,若满足的点有且只有一个,则实数的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某厂生产产品的年固定成本为250万元,每生产千件需另投人成本万元.当年产量不足80千件时,(万元);当年产量不小于80千件时,万元,每千件产品的售价为50万元,该厂生产的产品能全部售完.(1)写出年利润万元关于千件的函数关系式;(2)当年产量为多少千件时该厂当年的利润最大?18.如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,(1)按下列要求写出函数的关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式,(2)请你选用(1)中的一个函数关系式,求出的最大值.19.已知数列满足若数列满足:(1)求数列的通项公式;(2)求证:是等差数列.20.(1)设1<x<,求函数y=x(3﹣2x)的最大值;(2)解关于x的不等式x2-(a+1)x+a<1.21.如图,在平面四边形中,,,的面积为.⑴求的长;⑵若,,求的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据题意,依次分析选项,综合即可得答案.【题目详解】根据题意,依次分析选项:对于A,甲得分的极差为32,30+x﹣6=32,解得:x=8,A正确,对于B,甲得分的平均值为,其方差为,B错误;对于C,乙的数据为:12、25、26、26、31,其中位数、众数都是26,C正确,对于D,乙得分比较集中,则乙得分的方差小于甲得分的方差,D正确;故选:B.【题目点拨】本题考查茎叶图的应用,涉及数据极差、平均数、中位数、众数、方差的计算,属于基础题.2、D【解题分析】

利用三角形面积公式列出关系式,把,已知面积代入求出的长,再利用余弦定理即可求出的长.【题目详解】∵在中,,且的面积为,

∴,

解得:,

由余弦定理得:,

则.

故选D.【题目点拨】此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.3、C【解题分析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。4、D【解题分析】分析:先解不等式,再根据不等式性质确定的大小关系.详解:因为,所以,所以选D.点睛:本题考查一元二次不等式解法以及不等式性质,考查基本求解能力与运用性质解决问题能力.5、A【解题分析】

将圆的方程化为标准方程,找出圆心坐标与半径,求出圆心到直线的距离,利用切线的性质及勾股定理求处切线长的最小值,即可得到答案.【题目详解】将圆化为标准方程,得,所以圆心坐标为,半径为,则圆心到直线的距离为,所以切线长的最小值为,故选A.【题目点拨】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的标准方程,点到直线的距离公式,以及数形结合思想的应用,属于基础题.6、B【解题分析】

将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【题目详解】的零点是方程的解即均为锐角故答案为B【题目点拨】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.7、D【解题分析】

设直线的方程为,代入点(1,0)的坐标即得解.【题目详解】设直线的方程为,由题得.所以直线的方程为.故选D【题目点拨】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.8、B【解题分析】

根据等差数列的定义可得数列为等差数列,求出通项公式即可.【题目详解】由题意得所以为等差数列,,,选择B【题目点拨】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.9、A【解题分析】

根据等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得的值.【题目详解】由于成等差数列,故,即,所以,,所以,故选A.【题目点拨】本小题主要考查等差中项的性质,考查等比数列基本量的计算,属于基础题.10、C【解题分析】试题分析:由题意得,,故,故选C.考点:分段函数的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、0,±2【解题分析】

根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【题目详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【题目点拨】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.12、【解题分析】

由题得计算得解.【题目详解】由题得,所以.因为等比数列同号,所以.故答案为:【题目点拨】本题主要考查等比数列的性质和等比中项的应用,意在考查学生对这些知识的理解掌握水平.13、【解题分析】

设等差数列的公差为,根据题意建立和的方程组,解出这两个量,即可求出的值.【题目详解】设等差数列的公差为,由题意得,解得,因此,.故答案为:.【题目点拨】本题考查等差数列中项的计算,解题的关键就是要建立首项和公差的方程组,利用这两个基本量来求解,考查运算求解能力,属于基础题.14、【解题分析】

根据,可得平面,进而可得,再由,证明平面,即可得出,是的直角顶点.【题目详解】在三棱锥中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角顶点为.故答案为:.【题目点拨】本题考查了直线与直线以及直线与平面垂直的应用问题,属于基础题.15、【解题分析】

推导出a1=1,a2=2×1=2,当n≥2时,an=Sn﹣Sn﹣1,即,由此利用累乘法能求出数列{an}的通项公式.【题目详解】∵数列{an}的前n项和为Sn,满足:a2=2a1,且Sn1(n≥2),∴a2=S2﹣S1=a2+1﹣a1,解得a1=1,a2=2×1=2,∴,解得a3=4,,解得a4=6,当n≥2时,an=Sn﹣Sn﹣1,即,∴n≥2时,22n﹣2,∴数列{an}的通项公式为.故答案为:.【题目点拨】本题考查数列的通项公式的求法,考查数列的通项公式与前n项和公式的关系,考查运算求解能力,分类讨论是本题的易错点,是基础题.16、.【解题分析】

根据圆的切线的性质和三角形全等,得到,求得点的轨迹方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求解.【题目详解】由题意得:,,设,如下图所示∵PA、PB分别是圆O,O1的切线,∴∠PBO1=∠PAO=90°,又∵PB=2PA,BO1=2AO,∴△PBO1∽△PAO,∴,∴,∴,整理得,∴点P(x,y)的轨迹是以为圆心、半径等于的圆,∵动点P在直线:上(),满足PB=2PA的点P有且只有一个,∴该直线l与圆相切,∴圆心到直线l的距离d满足,即,解得或,又因为,所以.【题目点拨】本题主要考查了圆的切线的性质,以及直线与圆的位置关系的应用,其中解答中根据圆的切下的性质和三角形全等求得点的轨迹方程,再根据直线与圆相切,列出方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)100【解题分析】

(1)由于每生产千件需另投人成本受产量的影响有变化,根据题意,所以分当时和当时,两种情况进行讨论,然后根据利润的定义写出解析式.(2)根据(1)的利润函数为,当时,用二次函数法求最大值;当时,用基本不等式求最大值.最后两段中取最大的为利润函数的最大值,相应的x的取值即为此时最大利润时的产量.【题目详解】(1)根据题意当时,,当时,,综上:.(2)由(1)知,当时,,当时,的最大值为950万.当时,,当且仅当即时取等号,的最大值为1000万.综上:当产量为100千件时,该厂当年的利润最大.【题目点拨】本题主要考查了分段函数的实际应用,还考查了建模,运算求解的能力,属于骠题.18、(Ⅰ),;(Ⅱ).【解题分析】试题分析:(1)①通过求出矩形的边长,求出面积的表达式;②利用三角函数的关系,求出矩形的邻边,求出面积的表达式;(2)利用(1)②的表达式,化为一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值.试题解析:(1)①因为,所以,所以,.②当时,,则,又,所以,所以,().(2)由②得,,当时,取得最大值为.考点:1.三角函数中的恒等变换;2.两角和与差的正弦函数.【方法点睛】本题主要考查的是函数解析式的求法,三角函数的最值的确定,三角函数公式的灵活运用,计算能力,属于中档题,此题是课本题目的延伸,如果(2)选择(1)①中的解析式,需要用到导数求解,麻烦,不是命题者的本意,因此正确的选择是选择(1)②中的解析式,化成一个角的一个三角函数的形式,根据的范围确定矩形面积的最大值,此类题目选择正确的解析式是求解容易与否的关键.19、(1)(1)证明见解析【解题分析】

数列满足,变形为,利用等比数列的通项公式即可得出数列满足:,时,,可得,化为:,可得:,相减化简即可证明.【题目详解】(1)数列满足,,数列是等比数列,首项为1,公比为1.,.证明:数列满足:,时,,解得.时,,可得,化为:,可得:,相减可得:,化为:,是等差数列.【题目点拨】本题主要考查了等差数列与等比数列的定义通项公式、指数运算性质、数列递推关系,考查了推理能力与计算能力,属于中档题.20、(1)(2)见解析【解题分析】

(1)由题意利用二次函数的性质,求得函数的最大值.(2)不等式即(x﹣1)(x﹣a)<1,分类讨论求得它的解集.【题目详解】(1)设1<x,∵函数y=x(3﹣2x)2,故当x时,函数取得最大值为.(2)关于x的不等式x2﹣(a+1)x+a<1,即(x﹣1)(x﹣a)<1.当a=1时,不等式即(x﹣1)2<1,不等式无解;当a>1时,不等式的解集为{x|1<x<a};当a<1时,不等式的解集为{x|a<x<1}.综上可得,当a=1时,不等式的解集为∅,当a>1时,不等式的解集为{x|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论