陕西省汉滨区恒口高级中学2024届数学高一下期末联考模拟试题含解析_第1页
陕西省汉滨区恒口高级中学2024届数学高一下期末联考模拟试题含解析_第2页
陕西省汉滨区恒口高级中学2024届数学高一下期末联考模拟试题含解析_第3页
陕西省汉滨区恒口高级中学2024届数学高一下期末联考模拟试题含解析_第4页
陕西省汉滨区恒口高级中学2024届数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省汉滨区恒口高级中学2024届数学高一下期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆,直线.设圆O上到直线l的距离等于2的点的个数为k,则()A.1 B.2 C.3 D.42.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形3.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.4.在等差数列中,若公差,则()A. B. C. D.5.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数6.若函数在处取最小值,则等于()A.3 B. C. D.47.在中,角的对边分别为,已知,则的大小是()A. B. C. D.8.在中,设角的对边分别为.若,则是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形9.在空间直角坐标系中,轴上的点到点的距离是,则点的坐标是()A. B. C. D.10.若向量满足:与的夹角为,且,则的最小值是()A.1 B. C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.12.若无穷数列的所有项都是正数,且满足,则______.13.某县现有高中数学教师500人,统计这500人的学历情况,得到如下饼状图,该县今年计划招聘高中数学新教师,只招聘本科生和研究生,使得招聘后该县高中数学专科学历的教师比例下降到,且研究生的比例保持不变,则该县今年计划招聘的研究生人数为_______.14.若,则________.15.已知函数是定义域为的偶函数,当时,,若关于的方程有且仅有6个不同实数根,则实数的取值范围为______.16.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则an=_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的前n项和为,,.(1)求;(2)设,求数列的前n项和.18.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.19.已知函数,.(I)求函数的最小正周期.(II)求函数的单调递增区间.(III)求函数在区间上的最小值和最大值.20.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.21.已知函数的定义域为R(1)求的取值范围;(2)若函数的最小值为,解关于的不等式。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

找出圆O的圆心坐标与半径r,利用点到直线的距离公式求出圆心O到直线l的距离d,根据d与r的大小关系及r-d的值,即可作出判断.【题目详解】由圆的方程得到圆心O(0,0),半径,∵圆心O到直线l的距离,且r−d=−1<2,∴圆O上到直线l的距离等于2的点的个数为2,即k=2.故选:B.【题目点拨】本题考查直线与圆的位置关系,利用圆心到直线的距离公式求出圆心O到直线l的距离d,根据d与r的大小关系可判断直线与圆的位置,考查计算和几何应用能力,属于基础题.2、D【解题分析】

先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【题目详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【题目点拨】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.3、D【解题分析】

由正弦定理将边化角可求得,根据三角形为锐角三角形可求得.【题目详解】由正弦定理得:,即故选:【题目点拨】本题考查正弦定理边化角的应用问题,属于基础题.4、B【解题分析】

根据等差数列的通项公式求解即可得到结果.【题目详解】∵等差数列中,,公差,∴.故选B.【题目点拨】等差数列中的计算问题都可转为基本量(首项和公差)来处理,运用公式时要注意项和项数的对应关系.本题也可求出等差数列的通项公式后再求出的值,属于简单题.5、B【解题分析】

根据均值不等式成立的条件逐项分析即可.【题目详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【题目点拨】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.6、A【解题分析】

将函数的解析式配凑为,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的值,可得出的值.【题目详解】当时,,则,当且仅当时,即当时,等号成立,因此,,故选A.【题目点拨】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.7、C【解题分析】∵,∴,又,∴,又为三角形的内角,所以,故。选C。8、D【解题分析】

根据正弦定理,将等式中的边a,b消去,化为关于角A,B的等式,整理化简可得角A,B的关系,进而确定三角形.【题目详解】由题得,整理得,因此有,可得或,当时,为等腰三角形;当时,有,为直角三角形,故选D.【题目点拨】这一类题目给出的等式中既含有角又含有边的关系,通常利用正弦定理将其都化为关于角或者都化为关于边的等式,再根据题目要求求解.9、A【解题分析】

由空间两点的距离公式,代入求解即可.【题目详解】解:由已知可设,由空间两点的距离公式可得,解得,即,故选:A.【题目点拨】本题考查了空间两点的距离公式,属基础题.10、D【解题分析】

设作图,由可知点在以线段为直径的圆上,由图可知,,代入所求不等式利用圆的特征化简即可.【题目详解】如图,设,取线段的中点为,连接OE交圆于点D,因为即,所以点在以线段为直径的圆上(E为圆心),且,于是.故选:D【题目点拨】本题考查向量的线性运算,垂直向量的数量积表示,几何图形在向量运算中的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、如果l⊥α,m∥α,则l⊥m或如果l⊥α,l⊥m,则m∥α.【解题分析】

将所给论断,分别作为条件、结论加以分析.【题目详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m.正确;(2)如果l⊥α,l⊥m,则m∥α.正确;(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.【题目点拨】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.12、【解题分析】

先由作差法求出数列的通项公式为,即可计算出,然后利用常用数列的极限即可计算出的值.【题目详解】当时,,可得;当时,由,可得,上式下式得,得,也适合,则,.所以,.因此,.故答案为:.【题目点拨】本题考查利用作差法求数列通项,同时也考查了数列极限的计算,考查计算能力,属于中等题.13、50【解题分析】

先计算出招聘后高中数学教师总人数,然后利用比例保持不变,得到该县今年计划招聘的研究生人数.【题目详解】招聘后该县高中数学专科学历的教师比例下降到,则招聘后,该县高中数学教师总人数为,招聘后研究生的比例保持不变,该县今年计划招聘的研究生人数为.【题目点拨】本题主要考查学生的阅读理解能力和分析能力,从题目中提炼关键字眼“比例保持不变”是解题的关键.14、【解题分析】

观察式子特征,直接写出,即可求出。【题目详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【题目点拨】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。15、0<a≤或a.【解题分析】

运用偶函数的性质,作出函数f(x)的图象,由5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),结合图象,分析有且仅有6个不同实数根的a的情况,即可得到a的范围.【题目详解】函数是定义域为的偶函数,作出函数f(x)的图象如图:关于x的方程5[f(x)]2﹣(5a+4)f(x)+4a=0,解得f(x)=a或f(x),当0≤x≤2时,f(x)∈[0,],x>2时,f(x)∈(,).由,则f(x)有4个实根,由题意,只要f(x)=a有2个实根,则由图象可得当0<a≤时,f(x)=a有2个实根,当a时,f(x)=a有2个实根.综上可得:0<a≤或a.故答案为0<a≤或a..【题目点拨】本题考查函数的奇偶性和单调性的运用,考查方程和函数的转化思想,运用数形结合的思想方法是解决的常用方法.16、【解题分析】

利用等比数列的前n项和公式列出方程组,求出首项与公比,由此能求出该数列的通项公式.【题目详解】由题意,,不合题意舍去;当等比数列的前n项和为,即,解得,所以,故答案为:.【题目点拨】本题主要考查了等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)在等差数列中根据,,可求得其首项与公差,从而可求得;(2)可证明为等比数列,利用等比数列的求和公式计算即可.【题目详解】(1);(2),所以.【题目点拨】本题考查等比数列的前项和,着重考查等差数列的性质与通项公式及等比数列的前项和公式,属于基础题.18、(1),;(2)最大值为,最小值为【解题分析】

利用二倍角公式、两角和差正弦公式和辅助角公式可化简出;(1)令,解出的范围即为所求单调递增区间;(2)利用的范围可求得所处的范围,整体对应正弦函数图象可确定最大值和最小值取得时的值,进而求得最值.【题目详解】(1)令,,解得:,的单调递增区间为,(2)当时,当时,取得最大值,最大值为当时,取得最小值,最小值为【题目点拨】本题考查正弦型函数单调区间和最值的求解问题,涉及到利用两角和差公式、二倍角公式和辅助角公式化简三角函数;关键是能够灵活应用整体对应的方式,结合正弦函数的图象与性质来进行求解.19、(I)的最小正周期;(II)的单调递增区间为;(III);【解题分析】试题分析;(1)化函数f(x)为正弦型函数,求出f(x)的最小正周期;(2)根据正弦函数的单调性求出f(x)的单调增区间;(3)根据x的取值范围求出2x+的取值范围,从而求出f(x)的最值(I)因此,函数的最小正周期.(II)由得:.即函数的单调递增区间为.(III)因为所以所以20、(1)见解析;(2),.【解题分析】

(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.【题目详解】(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为的等差数列,.(2)由(1)可知,,,所以,.【题目点拨】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论