北京市十二中2024届数学高一第二学期期末综合测试试题含解析_第1页
北京市十二中2024届数学高一第二学期期末综合测试试题含解析_第2页
北京市十二中2024届数学高一第二学期期末综合测试试题含解析_第3页
北京市十二中2024届数学高一第二学期期末综合测试试题含解析_第4页
北京市十二中2024届数学高一第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市十二中2024届数学高一第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数的部分图象大致是()A. B.C. D.2.函数y=tan(–2x)的定义域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}3.中,角所对的边分别为,已知向量,,且共线,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形4.若圆与圆外切,则()A.21 B.19 C.9 D.-115.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.6.已知数列的通项公式是,则等于()A.70 B.28 C.20 D.87.甲、乙两队准备进行一场篮球赛,根据以往的经验甲队获胜的概率是,两队打平的概率是,则这次比赛乙队不输的概率是()A.- B. C. D.8.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.9.已知a>0,b>0,a,b的等比中项为2,则a+1A.3 B.4 C.5 D.4210.下列函数中,在区间上为增函数的是().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若、分别是方程的两个根,则______.12.将边长为1的正方形中,把沿对角线AC折起到,使平面⊥平面ABC,则三棱锥的体积为________.13.计算:=_______________.14.已知数列的通项公式,则____________.15.已知为等差数列,为其前项和,若,则,则______.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高,,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中抽取的人数应为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,底面为平行四边形,平面.()求证:平面;()若,,,求三棱锥的体积;()设平面平面直线,试判断与的位置关系,并证明.18.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.19.已知,,且与的夹角为.(1)求在上的投影;(2)求.20.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?21.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据函数的性质以及特殊位置即可利用排除法选出正确答案.【题目详解】因为函数定义域为,关于原点对称,而,所以函数为奇函数,其图象关于原点对称,故排除A,C;又因为,故排除B.故选:D.【题目点拨】本题主要考查函数图象的识别,涉及余弦函数性质的应用,属于基础题.2、A【解题分析】

根据诱导公式化简解析式,由正切函数的定义域求出此函数的定义域.【题目详解】由题意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函数的定义域是{x|x≠+,k∈Z},故选:A.【题目点拨】本题考查正切函数的定义域,以及诱导公式的应用,属于基础题.3、D【解题分析】

由向量共线的坐标表示得一等式,然后由正弦定理化边为角,利用诱导公式得展开后代入原式化简得,分类讨论得解.【题目详解】∵共线,∴,即,,,整理得,所以或,或或(舍去).∴三角形为直角三角形或等腰三角形.故选:D.【题目点拨】本题考查三角形形状的判断,考查向量共线的坐标表示,考查正弦定理,两角和的正弦公式,考查三角函数性质.解题时不能随便约分漏解.4、C【解题分析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断5、B【解题分析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【题目详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【题目点拨】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.6、C【解题分析】

因为,所以,所以=20.故选C.7、C【解题分析】

因为“甲队获胜”与“乙队不输”是对立事件,对立事件的概率之和为1,进而即可求出结果.【题目详解】由题意,“甲队获胜”与“乙队不输”是对立事件,因为甲队获胜的概率是,所以,这次比赛乙队不输的概率是.故选C【题目点拨】本题主要考查对立事件的概率问题,熟记对立事件的性质即可,属于常考题型.8、B【解题分析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9、C【解题分析】

由等比中项得:ab=4,目标式子变形为54【题目详解】∵a+1等号成立当且仅当a=b=2,∴原式的最小值为5.【题目点拨】利用基本不等式求最小值时,注意验证等号成立的条件.10、B【解题分析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【题目详解】由韦达定理得,,因此,.故答案为:.【题目点拨】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.12、【解题分析】

由面面垂直的性质定理可得面,再结合三棱锥的体积的求法求解即可.【题目详解】解:取中点,连接,因为四边形为边长为1的正方形,则,即,又平面⊥平面ABC,由面面垂直的性质定理可得:面,且,则,故答案为:.【题目点拨】本题考查了三棱锥的体积的求法,重点考查了面面垂直的性质定理,属中档题.13、【解题分析】试题分析:考点:两角和的正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.14、【解题分析】

将代入即可求解【题目详解】令,可得.故答案为:【题目点拨】本题考查求数列的项,是基础题15、【解题分析】

利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【题目详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【题目点拨】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.16、3【解题分析】

先由频率之和等于1得出的值,计算身高在,,的频率之比,根据比例得出身高在内的学生中抽取的人数.【题目详解】身高在,,的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【题目点拨】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3),证明见解析.【解题分析】

(1)根据题意得到,,面从而得到线线垂直;(2)由图形特点得到面,代入数据可得到体积值;(3)证明平面,利用平面平面,可得..【题目详解】()证明:∵面,面,∴,又∵,面,面,,∴面,()∵底面为平行四边形,面,∴面,∴.().证明:∵底面为平行四边形,∴,∵面,面,∴面,又∵面面,面,∴.18、(Ⅰ)或(Ⅱ)【解题分析】

(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【题目详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【题目点拨】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)-2.(2).【解题分析】分析:(1)根据题中所给的条件,利用向量的数量积的定义式,求得,之后应用投影公式,在上的投影为,求得结果;(2)应用向量模的平方等于向量的平方,之后应用公式求得结果.详解:(1)在上的投影为(2)因为,,且与的夹角为所以所以点睛:该题考查的是有关向量的投影以及向量模的计算问题,在解题的过程中,涉及到的知识点有向量的数量积的定义式,投影公式,向量模的平方和向量的平方是相等的,灵活运用公式求得结果.20、(1)见解析;(2)见解析【解题分析】

1)连结BD交AC于O,连结EO,由EO//PB可证PB//平面EA.(2)由侧面PAD⊥底面ABCD,,可证,又PAD是正三角形,所以AE⊥平面PCD.(3)设N为AD中点,连接PN,则,可证PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【题目详解】(1)连结BD交AC于O,连结EO,因为O,E分别为BD.PD的中点,所以EO//PB,,所以PB//平面EAC.(2)正三角形PAD中,E为PD的中点,所以,,又,所以,AE⊥平面PCD.(3)设N为AD中点,连接PN,则.又面PAD⊥底面ABCD,所以,PN⊥底面ABCD.所以,NB为PB在面ABCD上的射影.要使PB⊥AC,只需NB⊥AC,在矩形ABCD中,设AD=1,AB=x,由,得∽,解之得:,所以,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论