张家口市重点中学2024届数学高一下期末调研模拟试题含解析_第1页
张家口市重点中学2024届数学高一下期末调研模拟试题含解析_第2页
张家口市重点中学2024届数学高一下期末调研模拟试题含解析_第3页
张家口市重点中学2024届数学高一下期末调研模拟试题含解析_第4页
张家口市重点中学2024届数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

张家口市重点中学2024届数学高一下期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边经过点,那么的值为()A. B. C. D.2.设是△所在平面上的一点,若,则的最小值为A. B. C. D.3.将函数的图象沿轴向左平移个单位,得到一个偶函数的图象,则的一个可能取值为()A. B. C. D.4.中,,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形5.已知,是两个单位向量,且夹角为,则与数量积的最小值为()A. B. C. D.6.如图,在中,面,,是的中点,则图中直角三角形的个数是()A.5 B.6 C.7 D.87.若函数()的最大值与最小正周期相同,则下列说法正确的是()A.在上是增函数 B.图象关于直线对称C.图象关于点对称 D.当时,函数的值域为8.已知正方形的边长为,若将正方形沿对角线折叠为三棱锥,则在折叠过程中,不能出现()A. B.平面平面 C. D.9.已知、是平面上两个不共线的向量,则下列关系式:①;②;③;④.正确的个数是()A.4 B.3 C.2 D.110.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.33二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,如果存在使得“,且”成立(其中,),则称为的一个“谷值”。若且存在“谷值”则实数的取值范围是__________.12.己知数列满足就:,,若,写出所有可能的取值为______.13.如图,将全体正整数排成一个三角形数阵,按照这样的排列规律,第行从右至左的第3个数为___________.14.下边程序执行后输出的结果是().15.已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.16.已知向量a=(2,-4),b=(-3,-4),则向量a与三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.底面半径为3,高为的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).(1)设正四棱柱的底面边长为,试将棱柱的高表示成的函数;(2)当取何值时,此正四棱柱的表面积最大,并求出最大值.18.如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.19.已知集合,其中,由中的元素构成两个相应的集合:,.其中是有序数对,集合和中的元素个数分别为和.若对于任意的,总有,则称集合具有性质.(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.(Ⅱ)对任何具有性质的集合,证明.(Ⅲ)判断和的大小关系,并证明你的结论.20.已知数列的前项和为,且满足,().(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设数列的前项和为,求证:().21.如图,已知平面,为矩形,分别为的中点,.(1)求证:平面;(2)求证:面平面;(3)求点到平面的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】,故选C。2、C【解题分析】分析:利用向量的加法运算,设的中点为D,可得,利用数量积的运算性质可将原式化简为,为AD中点,从而得解.详解:由,可得.设的中点为D,即.点P是△ABC所在平面上的任意一点,为AD中点.∴.当且仅当,即点与点重合时,有最小值.故选C.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.3、B【解题分析】

利用函数y=Asin(ωx+)的图象变换可得函数平移后的解析式,利用其为偶函数即可求得答案.【题目详解】令y=f(x)=sin(2x+),则f(x)=sin[2(x)+]=sin(2x),∵f(x)为偶函数,∴=kπ,∴=kπ,k∈Z,∴当k=0时,.故的一个可能的值为.故选:B.【题目点拨】本题考查函数y=Asin(ωx+)的图象变换,考查三角函数的奇偶性的应用,属于中档题.4、C【解题分析】

由平面向量数量积运算可得,即,得解.【题目详解】解:在中,,则,即,则为钝角,所以为钝角三角形,故选:C.【题目点拨】本题考查了平面向量数量积运算,重点考查了向量的夹角,属基础题.5、B【解题分析】

根据条件可得,,,然后进行数量积的运算即可.【题目详解】根据条件,,,,当时,取最小值.故选:B【题目点拨】本题考查了向量数量积的运算,同时考查了二次函数的最值,属于基础题.6、C【解题分析】试题分析:因为面,所以,则三角形为直角三角形,因为,所以,所以三角形是直角三角形,易证,所以面,即,则三角形为直角三角形,即共有7个直角三角形;故选C.考点:空间中垂直关系的转化.7、A【解题分析】

先由函数的周期可得,再结合三角函数的性质及三角函数值域的求法逐一判断即可得解.【题目详解】解:由函数()的最大值与最小正周期相同,所以,即,即,对于选项A,令,解得:,即函数的增区间为,当时,函数在为增函数,即A正确,对于选项B,令,解得,即函数的对称轴方程为:,又无解,则B错误,对于选项C,令,解得,即函数的对称中心为:,又无解,则C错误,对于选项D,,则,即函数的值域为,即D错误,综上可得说法正确的是选项A,故选:A.【题目点拨】本题考查了三角函数的性质,重点考查了三角函数值域的求法,属中档题.8、D【解题分析】对于A:取BD中点O,因为,AO所以面AOC,所以,故A对;对于B:当沿对角线折叠成直二面角时,有面平面平面,故B对;对于C:当折叠所成的二面角时,顶点A到底面BCD的距离为,此时,故C对;对于D:若,因为,面ABC,所以,而,即直角边长与斜边长相等,显然不对;故D错;故选D点睛:本题考查了立体几何中折叠问题,要分析清楚折叠前后的变化量与不变量以及线线与线面的位置关系,属于中档题.9、C【解题分析】

根据数量积的运算性质对选项进行逐一判断,即可得到答案.【题目详解】①.,满足交换律,正确.②.,满足分配律,正确.③.,所以不正确.④.,

,可正可负可为0,所以④不正确.故选:C【题目点拨】本题考查向量数量积的运算性质,属于中档题10、A【解题分析】

根据相邻的两个组的编号确定组矩,即可得解.【题目详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【题目点拨】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

求出,,,当,递减,递增,分别讨论,,是否存在“谷值”,注意运用单调性即可.【题目详解】解:当时,有,,当,递减,递增,且.若时,有,则不存在“谷值”;若时,,则不存在“谷值”;若时,①,则不存在"谷值";②,则不存在"谷值";③,存在"谷值"且为.综上所述,的取值范围是故答案为:【题目点拨】本题考查新定义及运用,考查数列的单调性和运用,正确理解新定义是迅速解题的关键,是一道中档题.12、【解题分析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=513、【解题分析】

由题可以先算出第行的最后一个数,再从右至左算出第3个数即可.【题目详解】由图得,第行有个数,故前行一共有个数,即第行最后一个数为,故第行从右至左的第3个数为.【题目点拨】本题主要考查等差数列求和问题,注意从右至左的第3个数为最后一个数减2.14、15【解题分析】试题分析:程序执行中的数据变化如下:,输出考点:程序语句15、如果l⊥α,m∥α,则l⊥m或如果l⊥α,l⊥m,则m∥α.【解题分析】

将所给论断,分别作为条件、结论加以分析.【题目详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m.正确;(2)如果l⊥α,l⊥m,则m∥α.正确;(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.【题目点拨】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.16、5【解题分析】

先求出a⋅b,再求【题目详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【题目点拨】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)正四棱柱的底面边长为时,正四棱柱的表面积最大值为48.【解题分析】试题分析:(1)根据比例关系式求出关于的解析式即可;(2)设该正四棱柱的表面积为,得到关系式,根据二次函数的性质求出的最大值即可.试题解析:(1)根据相似性可得:,解得:;(2)设该正四棱柱的表面积为.则有关系式,因为,所以当时,,故当正四棱柱的底面边长为时,正四棱柱的表面积最大值为.点睛:本题考查了数形结合思想,考查二次函数的性质以及求函数的最值问题,是一道中档题;该题中的难点在于必须注意圆锥轴截面图时,三角形内的矩形的宽为正四棱柱的底面对角线的长度,除了二次函数求最值以外还有基本不等式法、转化法:如求的最小值,那么可以看成是数轴上的点到和的距离之和,易知最小值为2、求导法等.18、(1)或;(2).【解题分析】

(1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可.【题目详解】(1)由得圆心,∵圆的半径为1,∴圆的方程为:,显然切线的斜率一定存在,设所求圆的切线方程为,即.∴,∴,∴或.∴所求圆的切线方程为或.(2)∵圆的圆心在直线:上,所以,设圆心为,则圆的方程为.又∵,∴设为,则,整理得,设为圆.所以点应该既在圆上又在圆上,即圆和圆有交点,∴,由,得,由,得.综上所述,的取值范围为.考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆上存在点,使问题转化为,两圆有公共点问题是解决问题的关键所在.19、(Ⅰ)集合不具有性质,集合具有性质,相应集合,,集合,(Ⅱ)见解析(Ⅲ)【解题分析】解:集合不具有性质.集合具有性质,其相应的集合和是,.(II)证明:首先,由中元素构成的有序数对共有个.因为,所以;又因为当时,时,,所以当时,.从而,集合中元素的个数最多为,即.(III)解:,证明如下:(1)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也至少有一个不成立.故与也是的不同元素.可见,中元素的个数不多于中元素的个数,即,(2)对于,根据定义,,,且,从而.如果与是的不同元素,那么与中至少有一个不成立,从而与中也不至少有一个不成立,故与也是的不同元素.可见,中元素的个数不多于中元素的个数,即,由(1)(2)可知,.20、(Ⅰ),,(Ⅱ)见解析【解题分析】

(Ⅰ)根据和项与通项关系得,利用等比数列定义求得结果(Ⅱ)利用放缩法以及等比数列求和公式证得结果【题目详解】(Ⅰ),由得,两式相减得故,又所以数列是以2为首项,公比为2的等比数列,因此,即.(Ⅱ)当时,,所以.当时,故又当时,,.因此对一切成立.【题目点拨】本题主要考查了利用和的关系以及构造法求数列的通项公式,同时考查利用放缩法证明数列不等式,解题难点是如何放缩,意在考查学生的数学建模能力和数学运算能力。21、(1)证明见解析;(2)证明见解析;(3).【解题分析】

(1)利用线面平行的判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论