版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
热点06三角形与全等三角形三角形的基础知识是解决后续很多几何问题的基础,全等三角形也是几何问题中证明线段相等或者角相等的常用关系。所以,在中考中,考察的几率也是比较大。在考察题型上,三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和定理、“三线”基本性质等,全等三角形考点,考题形式选择填空均有,个别以简答题形式出现考察其性质与判定的简单应用。而且,因为该考点与其他几何考点的融入性特别多,所以还有作为几何综合问题的考点之一来综合考察。三角形基本性质:分类记忆,边、角、线;有关三角形的基本性质,主要从以下几个方向考察:①边的角度——三边关系——三角形两边之和大于第三边;②角的角度——三角形内角和定理——三个内角之和=180°(外角定理:三角形的一个外角等于与它不相邻两个内角的和);③三线的角度——高线、中线、角平分线2.应用方面抓实质——当问题已知条件中出现什么概念,立马想找个概念对应的性质;不仅仅是三角形的基本性质,其他几何图形也一样,概念决定性质,性质决定应用。应用时用不上怎么办?添加对应的辅助线,使对应概念的性质可以应用。3.全等三角形:根据不同条件选择合适的判定方法,判定和性质通常都是同步考察的;全等三角形的问题,简单问题直接选择合适的方法判定或者应用;复杂的问题中,证出两个三角形是全等三角形之后,通常要接着用全等三角形的对应边或者对应角相等来解决后续问题。所以,有时候问题中并没有让判定两个三角形全等,但是我们需要通常“三角形全等的证明”间接得到所需要的边相等或角相等。三角形常考热点考点有:三角形三边关系、内角和定理、外角定理、中线高线角平分线的应用、全等三角形的性质与判定等。大多数是数学问题的直接考察,个别时候会需要我们把生活实例中的某个物体抽象出数学模型,之后根据其性质对应计算或应用。A卷(建议用时:50分钟)1.(2021•宜宾·中考真题)若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.4 D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有4,故选:C.2.(2021•梧州·中考真题)在△ABC中,∠A=20°,∠B=4∠C,则∠C等于()A.32° B.36° C.40° D.128°【分析】由三角形的内角和定理可得:∠A+∠B+∠C=180°,再结合所给的条件,可得5∠C=160°,从而可求解.【解答】解:∵∠A=20°,∠B=4∠C,∴在△ABC中,∠A+∠B+∠C=180°,20°+4∠C+∠C=180°,5∠C=160°,∠C=32°.故选:A.3.(2021•湖北·中考真题)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40° B.50° C.60° D.70°【分析】利用平角的定义可得∠ADE=20°,再根据平行线的性质知∠A=∠ADE=20°,再由内角和定理可得答案.【解答】解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°.故选:D.4.(2021•本溪·中考真题)一副三角板如图所示摆放,若∠1=80°,则∠2的度数是()A.80° B.95° C.100° D.110°【分析】根据直角三角形的性质求出∠5,根据三角形的外角性质求出∠3,根据对顶角相等求出∠4,再根据三角形的外角性质计算,得到答案.【解答】解:如图,∠5=90°﹣30°=60°,∠3=∠1﹣45°=35°,∴∠4=∠3=35°,∴∠2=∠4+∠5=95°,故选:B.5.(2021•哈尔滨·中考真题)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30° B.25° C.35° D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.6.(2021•盐城·中考真题)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据全等三角形的判定定理SSS推出△COM≌△DOM,根据全等三角形的性质得出∠COM=∠DOM,根据角平分线的定义得出答案即可.【解答】解:在△COM和△DOM中,所以△COM≌△DOM(SSS),所以∠COM=∠DOM,即OM是∠AOB的平分线,故选:D.7.(2021•攀枝花·中考真题)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.① B.② C.③ D.①③【分析】根据全等三角形的判定方法结合图形判断出带③去.【解答】解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.8.(2021•青海·中考真题)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.8 B.7.5 C.15 D.无法确定【分析】过D点作DE⊥BC于E,如图,根据角平分线的性质得到DE=DA=3,然后根据三角形面积公式计算.【解答】解:过D点作DE⊥BC于E,如图,∵BD平分∠ABC,DE⊥BC,DA⊥AB,∴DE=DA=3,∴△BCD的面积=×5×3=7.5.故选:B.9.(2021•宁夏·中考真题)如图,在▱ABCD中,AD=4,对角线BD=8,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧相交于点E和点F,作直线EF,交对角线BD于点G,连接GA,GA恰好垂直于边AD,则GA的长是()A.2 B.3 C.4 D.5【分析】根据线段垂直平分线的性质得到AG=BG,根据勾股定理列出方程,解方程得到答案.【解答】解:设BG=x,则DG=8﹣x,由作图可知:EF是线段AB的垂直平分线,∴AG=BG=x,在Rt△DAG中,AD2+AG2=DG2,即42+x2=(8﹣x)2,解得:x=3,即AG=3,故选:B.10.(2021•安徽·中考真题)在△ABC中,∠ACB=90°,分别过点B,C作∠BAC平分线的垂线,垂足分别为点D,E,BC的中点是M,连接CD,MD,ME.则下列结论错误的是()A.CD=2ME B.ME∥AB C.BD=CD D.ME=MD【分析】根据题意作出图形,可知点A,C,D,B四点共圆,再结合点M是中点,可得DM⊥BC,又CE⊥AD,BD⊥AD,可得△CEM≌△BFM,可得EM=FM=DM,延长DM交AB于点N,可得MN是△ACB的中位线,再结合直角三角形斜边中线等于斜边的一半,可得DN=AN,得到角之间的关系,可得ME∥AB.【解答】解:根据题意可作出图形,如图所示,并延长EM交BD于点F,延长DM交AB于点N,在△ABC中,∠ACB=90°,分别过点B,C作∠BAC平分线的垂线,垂足分别为点D,E,由此可得点A,C,D,B四点共圆,∵AD平分∠CAB,∴∠CAD=∠BAD,∴CD=DB,(故选项C正确)∵点M是BC的中点,∴DM⊥BC,又∵∠ACB=90°,∴AC∥DN,∴点N是线段AB的中点,∴AN=DN,∴∠DAB=∠ADN,∵CE⊥AD,BD⊥AD,∴CE∥BD,∴∠ECM=∠FBM,∠CEM=∠BFM,∵点M是BC的中点,∴CM=BM,∴△CEM≌△BFM(AAS),∴EM=FM,∠CEM=∠BFM,∴点M是EF的中点,CE∥BF,∴∠EDF=∠CED=90°,∴EM=FM=DM(故选项D正确),∴∠DEM=∠MDE=∠DAB,∴EM∥AB(故选项B正确),综上,可知选项A的结论不正确.故选:A.11.(2021•雅安·中考真题)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为()A.2 B.4 C.6 D.8【分析】根据平移的性质得出AD=BE,进而得出BE:EC=2:1,利用三角形面积之比解答即可.【解答】解:由平移性质可得,AD∥BE,AD=BE,∴△ADG∽△CEG,∵BC:EC=3:1,∴BE:EC=2:1,∴AD:EC=2:1,∴=4,∵S△ADG=16,∴S△CEG=4,故选:B.12.(2021•鄂州·中考真题)如图,四边形ABDC中,AC=BC,∠ACB=90°,AD⊥BD于点D.若BD=2,CD=4,则线段AB的长为.【分析】过点C作CE⊥CD交AD于E,判断出∠ACE=∠BCD,进而利用AAS判断出△ACE≌△BCD,得出AE=BD=2,CE=CD,进而利用勾股定理求出DE=8,即AD=10,最后用勾股定理即可得出结论.【解答】解:如图,过点C作CE⊥CD交AD于E,∴∠ECD=90°,∵∠ACB=90°,∴∠ACB=∠ECD,∴∠ACB﹣∠BCE=∠ECD﹣∠BCE,∴∠ACE=∠BCD,∵AC=BC,BC与AD的交点记作点F,∵∠ACB=90°,∴∠AFC+∠CAE=90°,∵∠AFC=∠DFB,∴∠DFB+∠CAE=90°,∵∠ADB=90°,∴∠DFB+∠CBD=90°,∴∠CAE=∠CBD,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,在Rt△DCE中,CE=CD=4,∴DE=CD==8,∵BD=2,∴AE=2,∴AD=AE+DE=2+8=10,在Rt△ABD中,根据勾股定理得,AB===2,故答案为.13.(2021•兰州·中考真题)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.【分析】根据平行线的性质得到∠ABC=∠DEF.根据全等三角形的判定和性质定理即可得到结论.【解答】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.14.(2021•南京·中考真题)如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF∥CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.【分析】(1)由AAS证明△AOB≌△DOC即可;(2)由全等三角形的性质得AB=DC=2,再证△BCD∽△BEF,得=,即可求解.【解答】(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC(AAS);(2)解:由(1)得:△AOB≌△DOC,∴AB=DC=2,∵BC=3,CE=1,∴BE=BC+CE=4,∵EF∥CD,∴△BCD∽△BEF,∴=,即=,解得:EF=.15.(2021•河池·中考真题)如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,D,E分别是AB,BC边上的动点,以BD为直径的⊙O交BC于点F.(1)当AD=DF时,求证:△CAD≌△CFD;(2)当△CED是等腰三角形且△DEB是直角三角形时,求AD的长.【分析】(1)因为BD是⊙O的直径,所以∠DFB=90°,利用“HL“证明Rt△CAD≌Rt△CFD;(2)因为△CED为等腰三角形,故每一条边都可能是底边,可以分三类讨论,由于△DEB是直角三角形,所以D和F都可能为直角顶点,故需要分两类讨论,我们选择按照D和F为直角顶点分两类讨论更简单,当∠EDB=90°时,∠DEB<90°,∠CED是钝角,所以此时只能构造EC=ED的等腰三角形,故取点D使CD平分∠ACB,作DE⊥AB交BC于E,可以证明DE=DC,且DE∥AC,得到△BDE∽△BAC,设DE=DC=x,利用相似三角形对应边成比例,列出方程并求解,即可解决,当∠DEB=90°时,如图2,则∠AED=90°,若△CED为等腰三角形,则∠ECD=∠EDC=45°,即EC=DC,可以利用三角函数或相似来求AD的长度.【解答】证明:(1)∵BD为⊙O直径,∴∠DFB=90°,在Rt△ACD与Rt△FCD中,,∴Rt△ACD≌Rt△FCD(HL),解:(2)∵△DEB是直角三角形,且∠B<90°,∴直角顶点只能是D点和E点,①若∠EDB=90°,如图1,在AB上取点D,使CD平分∠ACB,过D作DE⊥AB交BC于E,∵CD平分∠ACB,∴∠ACD=∠ECD,∵∠CAB=∠EDB=90°,∴AC∥DE,∴∠ACD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,此时△ECD为E为顶角顶点的等腰三角形,△DEB是以D为直角顶点的直角三角形,设CE=DE=x,在直角△ABC中,BC==5,∴BE=5﹣x,∵DE∥AC,∴△BDE∽△BAC,∴=,∴,∴x=,∴,∵DE∥AC,∴,∴,∴AD=,②若∠DEB=90°,如图2,则∠CED=90°,∵△CED为等腰三角形,∴∠ECD=∠EDC=45°,∴可设CE=DE=y,∵tan∠B==,∴tan∠B==,∴,∴BC=CE+EB=5,∴y+=5,∴,∴CE=DE=,∴BD===,∴AD=AB﹣BD=4﹣=,∴AD的长为或.B卷(建议用时:80分钟)1.(2021•绥化·中考真题)下列命题是假命题的是()A.任意一个三角形中,三角形两边的差小于第三边 B.三角形的中位线平行于三角形的第三边,并且等于第三边的一半 C.如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等 D.一组对边平行且相等的四边形是平行四边形【分析】利用三角形的三边关系、三角形的中位线定理、平行线的性质及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:A、任意一个三角形中,三角形两边的差小于第三边,正确,是真命题,不符合题意;B、三角形的中位线平行于三角形的第三边,并且等于第三边的一半,正确,是真命题,不符合题意;C、如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等或互补,故原命题错误,是假命题,符合题意;D、一组对边平行且相等的四边形是平行四边形,正确,是真命题,不符合题意,故选:C.2.(2021•淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边是偶数这一条件,求得第三边的值.【解答】解:设第三边为a,根据三角形的三边关系知,4﹣1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a为4.故答案为:4.3.(2021•宿迁·中考真题)如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是()A.30° B.40° C.50° D.60°【分析】根据三角形内角和定理求出∠ABC,根据角平分线定义求出∠ABD,根据平行线的性质得出∠BDE=∠ABD即可.【解答】解:在△ABC中,∠A=70°,∠C=30°,∴∠ABC=180°﹣∠A﹣∠C=80°,∵BD平分∠ABC,∴∠ABD=∠ABC=40°,∵DE∥AB,∴∠BDE=∠ABD=40°,故选:B.4.(2021•乐山·中考真题)如图,已知直线l1、l2、l3两两相交,且l1⊥l3,若α=50°,则β的度数为()A.120° B.130° C.140° D.150°【分析】先求出α的对顶角等于50°,再根据三角形的外角性质求出β的度数.【解答】解:如图,根据对顶角相等得:∠1=∠α=50°,∵l1⊥l3,∴∠2=90°.∵∠β是三角形的外角,∴∠β=∠1+∠2=50°+90°=140°,故选:C.5.(2021•台湾·中考真题)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FC C.EF≠EC,AE=FC D.EF≠EC,AE≠FC【分析】由△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,可得∠A=∠D=40°,AC=DF,∠ACB=∠DFE,可得EF=EC;∠CED=35°,∠D=40°可得∠D>∠CED,由大角对大边可得CE>CD;利用AC=DF,可得AC﹣CE<DF﹣CD,即AE<FC,由上可得正确选项.【解答】解:∵△ABC≌△DEF,∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,∵∠ACB=∠DFE,∴EF=EC.∵∠CED=35°,∠D=40°,∴∠D>∠CED.∴CE>CD.∵AC=DF,∴AC﹣CE<DF﹣CD,即AE<FC.∴AE≠FC.∴EF=EC,AE≠FC.故选:B.6.(2021•齐齐哈尔·中考真题)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)【分析】利用∠1=∠2得到∠BAC=∠EAD,由于AC=AD,然后根据全等三角形的判定方法添加条件.【解答】解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.7.(2021•陕西·中考真题)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm【分析】过B作BM⊥AC于M,过D作DN⊥CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得△BCM≌△CDN,得到BM=CN,在Rt△BCM中,根据勾股定理求出BM=4,进而求出.【解答】解:由题意知,AB=BC=CD=DE=5cm,AC=6cm,过B作BM⊥AC于M,过D作DN⊥CE于N,则∠BMC=∠CND=90°,AM=CM=AC=×6=3,CN=EN,∵CD⊥BC,∴∠BCD=90°,∴∠BCM+∠CBM=∠BCM+∠DCN=90°,∴∠CBM=∠DCN,在△BCM和△CDN中,,∴△BCM≌△CDN(AAS),∴BM=CN,在Rt△BCM中,∵BC=5,CM=3,∴BM===4,∴CN=4,∴CE=2CN=2×4=8,故选:D.8.(2021•泰州·中考真题)如图,四边形ABCD中,AB=CD=4,且AB与CD不平行,P、M、N分别是AD、BD、AC的中点,设△PMN的面积为S,则S的范围是.【分析】有中点一般思考中线或者中位线,本题借助三角形中位线求解.【解答】解:作ME⊥PN,如图所示,∵P,M,N分别是AD,BD,AC中点,∴PM=AB=2,PN=CD=2,∴S△PMN==ME,∵AB与CD不平行,∴M,N不能重合,∴ME>0∵ME≤MP=2∴0<S△≤2.故答案是:0<S≤2.9.(2021•威海·中考真题)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.BF2=CF•AC【分析】根据题意得出∠DAC=∠EAB,用边角边定理证明△DAC≌△EAB,从而得出∠ADC=∠AEB;根据平分线的性质得出角之间的关系:∠DCA=∠EBA=36°=∠CAB=36°,再根据平行线的判定可得出CD∥AB;先假设DE=GE,根据等边对等角及三角形的内角和推出各角之间的关系,得到∠AEG≠∠EAB+∠ABE与三角形的外角性质产生矛盾,从而推出假设不成立;【解答】解:①∵∠CAB=∠DAE=36°,∴∠CAB﹣∠CAE=∠DAE﹣∠CAE,即∠DAC=∠EAB,在△DAC和△EAB中有:,∴△DAC≌△EAB(SAS),∴∠ADC=∠AEB,故A选项不符合题意;②∵∠CAB=∠DAE=36°,∴∠ACB=∠ABC=(180°﹣36°)÷2=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=36°,由①可知∠DCA=∠EBA=36°,∠CAB=36°,∴CD∥AB(内错角相等,两直线平行),故B选项不符合题意;③假设DE=GE,则∠DGE=∠ADE=72°,∠DEG=180°﹣2×72°=36°,∴∠AEG=∠AED﹣∠DEG=72°﹣36°=36°,∵∠ABE=36°,∠AEG是△ABE的一个外角,∴∠AEG=∠EAB+∠ABE而事实上∠AEG≠∠EAB+∠ABE,∴假设不成立,故C选项符合题意;④∵∠FAB=∠FBA=36°,∴∠AFB=180°﹣2×36°=108°,∴在△AFB中有=,∵∠CBF=36°,∠FCB=72°,∴∠BFC=72°,∴在△BFC中有:=,∴=,即BF2=AB•CF,∵AB=AC,∴BF2=AC•CF,故D选项不符合题意.故选:C.10.(2021•日照·中考真题)如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为2或时,△ABP与△PCQ全等.【分析】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等,故答案为:2或.11.(2021•绍兴·中考真题)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为.【分析】分C,D在AB的同侧或异侧两种情形,分别求解,注意共有四种情形.【解答】解:如图,当C,D同侧时,过点A作AE⊥CD于E.在Rt△AEB中,∠AEB=90°,AB=4,∠ABE=30°,∴AE=AB=2,∵AD=AC=2,∴DE==2,EC==2,∴DE=EC=AE,∴△ADC是等腰直角三角形,∴CD=4,当C,D异侧时,过C′作C′H⊥CD于H,∵△BCC′是等边三角形,BC=BE﹣EC=2﹣2,∴CH=BH=﹣1,C′H=CH=3﹣,在Rt△DC′H中,DC′===2,∵△DBD′是等边三角形,∴DD′=2+2,∴CD的长为2±2或4或2.故答案为:2±2或4或2.12.(2021•达州·中考真题)如图,在边长为6的等边△ABC中,点E,F分别是边AC,BC上的动点,且AE=CF,连接BE,AF交于点P,连接CP,则CP的最小值为.【分析】由“SAS”可证△ABE≌△ACF,可得∠ABE=∠CAF,可求∠APB=120°,过点A,点P,点B作⊙O,则点P在上运动,利用锐角三角函数可求CO,AO的长,即可求解.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠CAB=∠ACB=60°,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴∠ABE=∠CAF,∴∠BPF=∠PAB+∠ABP=∠CAP+∠BAP=60°,∴∠APB=120°,如图,过点A,点P,点B作⊙O,连接CO,PO,∴点P在上运动,∵AO=OP=OB,∴∠OAP=∠OPA,∠OPB=∠OBP,∠OAB=∠OBA,∴∠AOB=360°﹣∠OAP﹣∠OPA﹣∠OPB﹣∠OBP=120°,∴∠OAB=30°,∴∠CAO=90°,∵AC=BC,OA=OB,∴CO垂直平分AB,∴∠ACO=30°,∴cos∠ACO=,CO=2AO,∴CO=4,∴AO=2,在△CPO中,CP≥CO﹣OP,∴当点P在CO上时,CP有最小值,∴CP的最小值=4﹣2=2,故答案为2.13.(2021•长沙·中考真题)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.【分析】(1)证明AD是BC的中垂线,即可求解;(2)利用勾股定理分别计算出BD和AE即可求出△ABE的周长和面积.【解答】解:(1)证明:∵AD⊥BC,BD=CD,∴AD是BC的中垂线,∴AB=AC,∴∠B=∠ACB;(2)在Rt△ADB中,BD===3,∴BD=CD=3,AC=AB=CE=5,∴BE=2BD+CE=2×3+5=11,在Rt△ADE中,AE===4,∴C△ABE=AB+BE+AE=5+11+4=16+4,S△ABE===22.14.(2021•黄石·中考真题)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.【分析】(1)利用角角边定理判定即可;(2)利用全等三角形对应边相等可得AD的长,用AB﹣AD即可得出结论.【解答】(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.15.(2021•湘潭·中考真题)如图,矩形ABCD中,E为边BC上一点,将△ABE沿AE翻折后,点B恰好落在对角线AC的中点F上.(1)证明:△AEF≌△CEF;(2)若AB=,求折痕AE的长度.【分析】(1)由折叠性质得到,∠AFE=∠B=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《数字电子技术基础》2021-2022学年期末试卷
- 淮阴师范学院《基础和声(2)》2022-2023学年第一学期期末试卷
- 淮阴师范学院《证券法》2023-2024学年第一学期期末试卷
- 淮阴工学院《税务代理》2021-2022学年第一学期期末试卷
- 淮阴工学院《设施规划与物流分析》2023-2024学年第一学期期末试卷
- DB4414T+30-2024柑橘种质资源圃建设和管理规范
- DB2310-T 141-2024红松苗芽接培育技术规程
- 文书模板-《小区停车自治管理方案》
- 钢结构大棚安拆专项施工方案
- 林业项目融资与资本运作考核试卷
- 高考名句名篇《菩萨蛮 书江西造口壁》课件
- 兽医病理学智慧树知到期末考试答案章节答案2024年浙江农林大学
- 大学生生涯发展展示 (修改版)
- JT-T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 教科版小学科学六年级上学期期中考试检测试卷与答案(共5套)
- 运动安全与健康智慧树知到期末考试答案章节答案2024年浙江大学
- 模具设计与制造生涯规划报告
- (完整版)四宫格数独题目204道(可直接打印)及空表(一年级数独题练习)
- 1.1信息社会及其特征课件高中信息技术粤教版必修2
- 小学科学教科版六年级上册全册教案(2023秋)
- 《第1课时 勾股定理》公开课教学课件
评论
0/150
提交评论