2023年世界互联网大会领先科技奖成果集+《科技之魅》_第1页
2023年世界互联网大会领先科技奖成果集+《科技之魅》_第2页
2023年世界互联网大会领先科技奖成果集+《科技之魅》_第3页
2023年世界互联网大会领先科技奖成果集+《科技之魅》_第4页
2023年世界互联网大会领先科技奖成果集+《科技之魅》_第5页
已阅读5页,还剩130页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

写在《科技之魅》的前面Preface

to

the

Charm

of

Science

and

Technology科技的魅力在于创新,从“万物互联”到“万物智联”,科技发展赋能经济社会生产生活,引领人类迈向数字世界,不断触摸前沿科技发展脉动,创造美好的数字未来。The

charm

of

technology

lies

in

innovation.

From

the

"Internet

of

Everything"

to

the

"ArtificialIntelligence

of

Everything",

technological

advances

empower

the

economic

and

social

aspectsof

production

and

life,

leading

human

society

into

the

digital

world.

It

touches

the

pulse

of

cut-ting-edgetechnologicaldevelopment,creatingapromisingdigitalfuture.当前,以互联网为代表的新一轮科技革命和产业变革深入演进,6G、人工智能、量子计算等新兴技术进入发展快车道,数字化、网络化、智能化进程全面提速。在此时代背景下,“世界互联网领先科技成果发布活动”升级为“世界互联网大会领先科技奖”,在展现全球互联网领域最新科技成果、彰显互联网从业者的创造性贡献、搭建全方位的创新交流平台等方面将发挥更加重要的作用。A

new

wave

of

technological

revolution

and

industrial

transformation

is

unfolding,

with

theInternet

serving

as

a

key

driver.

Emerging

technologies

such

as

6G,

artificial

intelligence,

andquantum

computing

are

advancing

rapidly.

The

processes

of

digitization,

networking,

and

intel-ligence

is

accelerating

at

an

unprecedented

pace.

In

this

context,

"the

Release

Ceremony

forWorld

Leading

Internet

Scientific

and

Technological

Achievements"

has

been

upgraded

to

"theWorld

Internet

Conference

Awards

for

Pioneering

Science

and

Technology".

This

upgrade

aimsto

play

a

more

significant

role

in

showcasing

the

latest

technological

accomplishments

in

theglobal

Internet

field,

highlighting

the

creative

contributions

of

Internet

practitioners,

and

foster-ingacomprehensiveplatformforinnovationexchanges.作为世界互联网大会领先科技奖评审委员会主席,我欣喜看到本年度成果征集持续得到全球范围的广泛关注和积极响应。今年成果首次区分基础研究、关键技术与工程研发三种类型。在基础研究组主任委员美国互联网先驱戴夫·法伯先生,关键技术组主任委员中国工程院院士吴建平先生,工程研发组主任委员韩国互联网之父全吉男教授等

40

位中外专家的支持下,我们共征集到来自中国、美国、俄罗斯、英国、意大利、日本、韩国、阿联酋等多个国家及地区的领先科技成果

246

项,涵盖

人工智能、5G、6G、大数据、网络安全、高性能芯片、工业互联网等众多前沿科技领域。经过专家推荐,57

项优秀成果,收录于本年度《科技之魅》成果手册。我们相信,这些成果的不断转化落地,将更好地推动经济社会韧性发展,为构建网络空间命运共同体、推动人类文明进步提供更多可能。As

the

chairman

of

the

World

Internet

Conference

Awards

for

Pioneering

Science

and

Tech-nology

Review

Committee,

I

am

thrilled

to

see

the

global

attention

and

positive

responses

thisyear's

collection

of

achievements

has

received.

This

year,

for

the

first

time,

the

achievements世界互联网大会领先科技奖评审委员会World

Internet

ConferenceAwards

for

Pioneering

Science

andTechnology

Review

Committeehave

been

categorized

into

three

types:

Basic

Research,

Key

Technology,

and

EngineeringResearch

and

Development.

With

the

support

of

40

experts

from

all

over

the

world,

includingMr.

David

Farber,

an

American

Internet

pioneer

and

the

Director

of

the

Basic

Research;

Mr.

WuJianping,

an

Academician

of

the

Chinese

Academy

of

Engineering

and

the

Director

of

the

KeyTechnology;

and

Professor

Chon

Kilnam,

the

Father

of

the

Korean

Internet

and

the

Director

ofthe

Engineering

Research

and

Development,

we

have

collected

a

total

of

246

achievementsfrom

countries

and

regions,

such

as

China,

the

United

States,

Russia,

the

United

Kingdom,Germany,

Italy,

Japan,

Korea,

and

the

United

Arab

Emirates.

These

achievements

cover

a

widerange

of

cutting-edge

technological

fields,

including

artificial

intelligence,

5G,

6G,

big

data,

cy-bersecurity,

high-performance

chips,

and

the

industrial

Internet.

After

thorough

review

by

theexperts,

57

leading

achievements

have

been

selected

and

compiled

into

a

publication

called"The

Charm

of

Science

and

Technology".

We

firmly

believe

that

the

continued

implementationof

these

achievements

will

better

promote

resilient

economic

and

social

development,

offermore

possibilities

for

building

community

with

a

shared

future

in

cyberspace

and

advance

hu-mancivilization.邬贺铨WU,Hequan主席

Chair中国工程院院士AcademicianoftheChinese

AcademyofEngineering戴夫·法伯FARBER,David基础研究组主任委员

DirectorofBasicResearch星燧贸迁,晷刻渐移。伴随着世界互联网大会国际组织的发展,《科技之魅》将持续记录互联网科技创新的非凡成就。希望《科技之魅》持续传递互联网创新发展的智慧与力量,美国互联网先驱、日本庆应义塾大学荣誉教授和网络文明研究中心联席主席引领未来互联网技术发展方向,为国际交流互鉴和科技成果转化拓展更为广阔

的空间。Pioneerofthe

AmericanInternetDistinguishedProfessorandco-directoroftheCyberCivilizationResearchCenteratKeioUniversityWith

the

passage

of

time

and

the

evolution

of

the

World

Internet

Conference,

the

Charm

ofScience

and

Technology

will

continue

to

document

the

extraordinary

achievements

of

Internettechnological

innovation.

We

aspire

for

this

publication

to

consistently

transmit

the

wisdom

andpower

of

Internet

innovative

development,

guide

the

future

direction

of

Internet

technology

andprovide

a

broader

space

for

international

exchange,

mutual

learning,

and

the

transformation

oftechnologicalachievements.吴建平WU,Jianping关键技术组主任委员

DirectorofKey

Technology中国工程院院士、清华大学教授AcademicianofChinese

AcademyofEngineeringProfessorof

Tsinghua

University全吉男CHON,Kilnam工程研发组主任委员

DirectorofEngineeringResearchandDevelopment韩国互联网之父、韩国科学技术院荣誉教授FatheroftheKoreanInternetProfessorEmeritusoftheKorea

AdvancedInstituteofScienceand

Technology目录世界互联网大会领先科技奖获奖成果CONTENTSLeading

Achievementsof

World

InternetConference

Awards

forPioneeringScienceand

Technology基础研究组

Basic

ResearchIBM

生成式人工智能

watsonx:企业级

AI

的未来060IBMwatsonx:

TheGenerative

AIforBusiness多层次多元知识融通的自然语言深度学习基础方法002Multi-Level

Multi-Type

Knowledge

Fused

Deep

Learning

FundamentalMethodsforNaturalLanguages工程研发组

Engineering

Research

and

Development视觉媒体的层次化内容感知008012ARGO:机车车辆的自主检查机器人066068072HierarchicalContentPerceptionofVisualMediaARGO:

AutonomousInspectionofRollingStocks5G

移动通信系统高能效机理研究卡巴斯基汽车安全网关(基于卡巴斯基操作系统)Research

on

High-Efficiency

Mechanisms

in

5G

Mobile

CommunicationSystemKaspersky

AutomotiveSecureGateway(basedonKasperskyOSoperatingsystem)腾讯觅影数智医疗影像平台关键技术组

Key

TechnologyTencent

AIMISMedicalImagingPlatformofDigitalIntelligenceC-V2X

车联网通信关键技术研究与应用018Research

and

Application

of

Key

Cellular

Vehicle-to-Everything

(C-V2X)TechnologiesGaussDB:分布式数据库024034GaussDB:DistributedDatabase知识增强大语言模型关键技术TheKey

TechnologiesofKnowledge-enhancedLargeLanguageModel4G/5G

移动通信共建共享关键技术创新与产业化038Technological

Innovation

and

IndustrialApplications

of

4G-5G

Co-constructionandSharing中国联通全光底座关键技术创新与应用044048052All-OpticalInfrastructureInnovationand

ApplicationofChinaUnicom智慧油田工业物联网

WIA-PA

技术与系统IIoT

WIA-PA

Technology

andSystemofIntelligentOilfield全球首个

5GAdvanced-ready

调制解调器及射频系统TheWorld'sFirst5G

Advanced-ReadyModem-RFSystem大规模云网融合系统内容高效可靠分发与主动防御技术研发及产业化056Research

and

Development

and

Industrialization

of

Efficient,

Reliable

Distrib-uted

Content

and

Proactive

Defense

Technologies

for

Large-scale

Cloud-net-workConvergenceSystems目录《科技之魅》收录成果CONTENTSCharmof

Scienceand

Technology

Collection基础研究组

Basic

Research面向体育赛事

8K

高清视频转播应用的太赫兹高速无线通信系统128132Terahertz

High-speed

Wireless

Communication

Systems

for

8K

High-definition低剂量

CT

智能成像理论与方法VideoBroadcastingandSportsEvents078082AliOSDrive

智能驾驶操作系统TheoryandMethodsofIntelligentLow-DoseCT

Imaging跨空间大数据关联表征学习理论与方法AliOSDriveOperatingSystemsfor

AutonomousVehiclesTheory

and

Method

of

Cross-space

Big

Data

Correlational

RepresentationalLearningZDNS

下一代互联网基础资源寻址关键技术、国际标准及应用136ZDNS

Key

Technologies,

International

Standards

and

Applications

of

Next-现代处理器重

大漏洞发现Generation

AddressingSystemforInternet086ExposingtheMajorVulnerabilitiesinModernProcessors超高清国产技术标准及低延迟视频云化直播制播技术创新及应用140面向全生命周

期的可信数据管理理论与方法092096Innovation

and

Application

of

UHD

Technology

Standards

and

Low-latencyVideoCloud-basedLiveBroadcasting

TechnologyFullLifecycle

TrustedDataManagement:

TheoryandMethod智感波束技术多模态情感脑机接口的情绪表征机理研究144148InterferenceSensingResearch

on

Emotion

Representation

Mechanisms

for

Multimodal

AffectiveBrain-ComputerInterfaces趣链区块链平台面向复杂场景视觉理解的高效率神经网络方法Technological

Achievement:Hyperchain100Efficient

Neural

Network

Approaches

for

Visual

Understanding

in

ComplexScenes面向通感算传泛在融合的视联算力系统创新与应用面向复杂决策的核空间和因果推理方法152Innovation

and

Application

of

Internet

of

Video

Things

Computing

(IoVTC)104System

for

Ubiquitous

Integration

of

Communication,

Sensing,

Computation,and

TransmissionKernelSpaceandCausalReasoningMethodsforComplexDecision-Making面向知识工作者的个性化轻量大语言模型大象

GPT关键技术组

Key

Technology156EverGPT:

A

Personalized

Lightweight

Large

Language

Model

for

KnowledgeWorkers华为云盘古大模型5G-TSN

协同组网及关键技术110114118160164168HuaweiCloudPanguModelsKey

Technologiesfor5G-TSNCooperationNetwork大型

IPv6

单栈网络技术创新与规模部署多链云端集成

IDELargeIPv6-onlyNetwork

Technology

InnovationandScaleDeploymentCloud-basedMulti-chainIDE讯飞星火认知大模型生物数据隐私计算平台IFLYTEK

SPARK

CognitiveLargeLanguageModelBiodataPrivacyComputationPlatform基于

B5G

融合感知的城市数字道路关键技术研究及示范应用面向数控装备的工业互联网一体化解决方案

iNC-Cloud124172Key

Technology

Research

and

Applications

of

Urban

Digital

Road

Based

onB5GFusionPerceptionIndustrialInternetIntegrationSolutionforCNCEquipment-iNC-Cloud目录《科技之魅》收录成果Charmof

Scienceand

Technology

CollectionCONTENTS数据活化的关键技术及其智慧城市应用安全可溯源的

VoWiFi

技术创新及应用示范176224Key

TechnologiesofDataVitalizationand

Their

ApplicationsinSmartCitySecureand

TraceableVoWiFiTechnology

Innovationand

ApplicationDemonstration空间超大规模卫星网络仿真验证系统工程研发组

Engineering

Research

and

Development228232234TheSimulationandVerificationSystemforMega-scaleSatelliteNetwork5G

光芯片曙光

ParaStor

液冷存储系统1821845GOpticalChipSugonParaStorLiquid-CooledStorageSystem“星火·链网”数据服务网络崖山数据库系统XinghuoBIFDataServiceNetworkYashanDBNEC:基于先进的“因果数据分析”引擎技术的

AI

健康管理系统云地协同的新一代人工智能安全引擎238188Next-generationCloud-localCollaborative

AISecurityEngineNEC:

AI

Health

Management

System

Based

on

Advanced

Causality

AnalysisEngine

Technology云边端协同的视联网技术创新与超大规模应用实践高精度动态地图基础平台242192198202InnovationinIoVT

(InternetofVideo

Things)

TechnologyandUltra-Large-ScaleApplicationEnabledbyCloud-Edge-DeviceCollaborationHDDynamicMapBasicPlatform基于忆阻器的存算一体

SoC

芯片及计算引擎福瑞泰克

ODIN

智能驾驶数智底座246250TheReRAM-BasedCompute-In-MemorySoCandSoftwareEngineFreetechODINIntelligentDrivingPlatformTheranica:数字疼痛

治疗管理设备

Nerivio隐私运营及管理中台Theranica:DigitalPain

TreatmentManagementEquipmentNerivioPrivacyOperationandManagementHub(POH)“源图”开源软件供应链重

大基础设施206Open

Source

Map:

A

Major

Infrastructure

for

Open

Source

Software

SupplyChain锂电池储能系统安全防控成套装备研制及其工程化212Development

and

Engineering

of

Safety

and

Control

Complete

Equipment

forLithiumBatteryEnergyStorageSystem新一代

AGI

基础设施:商汤大装置

SenseCore

与商汤日日新

SenseNova大模型体系216Next-generation

AGI

Infrastructure:

SenseCore

AI

Infrastructure

andSenseNovaFoundationModelSet翼龙平台220Yilong世界互联网大会Collectionof

Shortlisted

Achievements

ofWorld

Internet

Conference

Awards

forPioneering

Science

and

Technology领先科技奖收录成果集世界互联网大会领先科技奖获奖成果Leading

Achievements

of

World

Internet

ConferenceAwards

forPioneeringScienceandTechnology基础研究组BasicResearch科技之魅Charm

of

Science

and

Technology多层次多元知识融通的自然语言深度法、实体嵌入桥接的知识增强型句of

deep

learning

in

NLP,

significantly

enhancing

the

fundamental

capabilities

of

NLPmodels.学习基础方法级语言建模方法以及多粒度注意力机制驱动的语言模型与知识系统协同方法,突破了自然语言深度学习ӮኴᎣᦩᶆ᠍ᔰ୏ސԧಯလ௶௔ዐܻᡩᛘየዐዤጱෛ᪠ஆ̶ਙऩᑍӮኴጱḮ؜̶ŏŏᓤᒍ੶的若干重要瓶颈制约,显著提升了Multi-Level

Multi-Type

Knowledge

Fused

Deep

Learning

Funda-mentalMethodsforNaturalLanguagesᛘየࢩᔰ自然语言处理模型的基本能力。���ಪګ��!ᤉኞᇔં௔"$'()ᶆ᠍ᔰ୏ސԧಯလ௶௔ዐܻᡩᛘየዐዤጱෛ᪠ஆ̶ਙऩᑍӮኴጱḮ؜̶���ݙ੶This

project

addresses

three

profoundchallenges:

the

insufficient

ability

ofword-level

embedding

representations

toutilize

linguistic

knowledge

comprehen-sively,

the

inadequate

proactive

aware-nessofworldknowledgebysentence-lev-el

language

models,

and

the

insufficientabilityoflanguagemodelstodeeplyutilizeknowledge

systems.

A

relatively

completemulti-level

multi-type

knowledge

fuseddeep

learning

fundamental

methods

fornatural

languages

has

been

established.This

includes

the

word-level

embeddingmethod

integrating

multi-level

linguisticknowledge

of

senses,

morphemes,

andtopics;

the

knowledge-enhanced

sen-#$%&������᧍᥺Ꭳᦩ᦯੶ᶆ᠍ᔰ

ŏ

ಯလ

ŏ

ዐዤ

ŏ

᪠ஆ

ŏ

Ḯ؜4567<=>?!"#!$%&'()*+,-./01234567MethodologySystemMulti-level

Multi-type

Knowledge

Fused

Deep

Learning

Fundamental

Methodsfor

Natural

Language᧍ᔰ੶

ዤ$+0RS$+0$!$+M,-0Z[ELTԎᶱ੶ېဩ

᭲᪠

᪠ᕚ

ᛔ᨟

ᛔᨮ)*TUV!TW/TUXYTStructuralHierarchyandAmbiguityofLanguageSemanticCombinabilityandOpennessofLanguageInteractionbetweenLanguageandKnowledgeKey

Features自然语言的多层次及多元知识123456\$+,-]/^_`Hab@2$+B?\cd,-&Le,`Hab$+B?\,-NOfD^_`HabInsufficientCapabilityofWord-levelEmbeddingstoComprehensivelyUtilizeLinguisticKnowledgeInsufficientProactiveAwarenessofWorldKnowledgeinSentence-levelLanguageModels89:;InsufficientCapabilityofLanguageModelstoDeeplyUtilizeKnowledgeSystemsTechnicalChallengesWorld

KnowledgeDocumentLevelᶆ᠍ᔰ୏ސԧಯလ௶௔ዐܻᡩᛘየዐዤጱෛ᪠ஆ̶ਙऩᑍӮኴጱḮ؜̶ŏŏ!"#$%#&'(2345

)*$+,-./09:34;<0,-=>?@2$+AB78(CDEFGHIJKL0$+B?M,-NOPQ78Word-levelEmbeddingMethodIntegratingMulti-levelLinguisticKnowledgeofSenses,Morphemes,andTopicsKnowledge-enhancedSentence-levelLanguageModelingthroughEntityEmbeddingBridgingCollaborationofLanguageModelandKnowledgeSystem

DrivenbyMulti-granularityMutualAttentionMechanismಪګinhibitthᛘeraየpeuticࢩfacᔰtor�����(malaria)(Artemisinin)ᤉኞᇔderivativeattrંib௔uteBasicAlgorithms12345678SentenceLevelᶆ᠍ᔰ୏ސԧಯလ௶௔ዐܻᡩᛘየዐዤጱෛ᪠ஆ̶ਙऩᑍӮኴጱḮ؜̶���(Plasmodium)Multiple

Levelsof

LanguageMultiple-TypeKnowledge多层次多元知识融通的自然语言深度学习基础方法体系架构��(disease)����(ArtemisininEster)The

Systematized

Framework

of

Multi-Level

Multi-Type

KnowledgeFusedDeepLearningFundamentalMethodsforNaturalLanguagestence-level

language

modeling

throughentity

embedding

bridging;

and

the

col-laboration

of

language

model

and

knowl-edge

system

driven

by

multi-granularitymutual

attention

mechanism.

significantbottlenecks

restricting

the

advancement᧍La᥺ngᎣuaᦩge

KnowledgeWordLevelᶆ᠍ᔰŏಯလŏዐዤŏ

᪠ஆŏ

Ḯ؜MorphemeLevelᶆ᠍ᔰಯလዐ

ዤ多层次多元知识融通的自然语言深度学习基础方法体系框架Sense

Levelېဩ

᭲᪠

᪠ᕚ

ᛔ᨟

ᛔᨮThe

Systematized

Framework

of

Multi-Level

Multi-Type

Knowledge

Fused

Deep

Learning

FundamentalMethodsforNaturalLanguagesMultipleLevelsofNaturalLanguageandMulti-typeKnowledge清华大学TsinghuaUniversity华为技术有限公司HuaweiTechnologiesCo.,Ltd.引言自然语言处理是人工智能重

大前沿领域。清华大学与华为技术有限公A

world-class

multi-level

multi-type司多年来研究并建立了一套多层次多元知识融通的自然语言深度学习基础knowledge

fused

deep

learningfundamental

method

for

natural

lan-词典定义使能的词义表示与排歧一体化义项嵌入方法方法体系,在该方向学术创新和开源共享方面取得了具有国际领先性和影guageInputSentence响力的成果。本项目针对词级嵌入表示对K-nearestNeighborsinEmbedding

Spacebank(word)语言知识综合利用能力不足、句级Sense-levelPredictionIntroduction语言模型对世界知识主动感知能力Natural

Language

Processing

(NLP)

is

a

cutting-edge

research

field

in

artificial

intelli-gence.TsinghuaUniversityandHuaweiTechnologiesCoLtd.havedevotedasignificantattention

to

research

and

establishment

of

the

multi-level

multi-type

knowledge

fuseddeep

learning

fundamental

methods

for

natural

languages

in

the

past

years,

achievinginternationally

advanced

and

influential

outcomes

in

academic

innovation

and

open-sourcesharing.Word-levelPrediction不足以及语言模型对知识系统深度bank1

(sense)利用能力不足这三个深刻挑战,建Word

&

SenseFusionPredictionWordNet

definition:立了较为完整的多层次多元知识融SpatialProjectionbank2

(sense)通的自然语言深度学习基础方法体具有国际一流水平的多层次多元知识融通的自然语言深度学习系,包括义项、语素、主题多层次ObjectiveFunctionCentralWord基础方法语言知识融合的词级嵌入表示方Dictionary-enabledSenseRepresentationandDisambiguationIntegratedSenseEmbeddingMethod002003PAGEPAGE科技之魅Charm

of

Science

and

TechnologyScholar,

the

highest

single

paper

beingcited

1,250

times.

For

example,

one

of

therepresentative

papers

from

this

achieve-ments

stood

out

prominently

in

terms

ofacademic

influence

among

over

660

pa-pers

published

in

the

top

conference

ACL2019.

Li

Fei-Fei,

a

fellow

of

the

Americanacademies,

pointed

out

in

her

significantpaper

that

our

achievement

had

the

bestperformance

in

semantic

evaluation

atthe

time.

Tomas

Mikolov,

the

proponentof

the

renowned

Word2Vec

model,

alsomentioned

our

achievement

in

his

seminalwork.

The

team

of

Peter

Szolovits,

Fellowof

the

National

Academy

of

Medicine

anda

professor

at

Massachusetts

Institute

ofTechnology

(MIT),

adopted

one

of

ourachievements,

ERNIE,

as

the

foundationalframework

for

their

research.

They

fullyintegrated

it

with

medical

knowledgebases,

resulting

in

the

development

of

thec-ERNIE

medical

model

and

the

medicaldomain

intelligent

question-answeringsystem

M-cERNIE.

Other

notable

citersinclude

Dan

Jurafsky,

a

fellow

of

theAmerican

Academy

of

Arts

and

Sciencesand

a

professor

at

Stanford

University;Hinrich

Schütze,

the

chair

of

ACL2020and

a

chaired

professor

at

the

Universityof

Munich;

Christopher

Manning,

an

ACM/AAAI

fellow

and

director

of

the

StanfordArtificial

Intelligence

Laboratory

(SAIL);and

Yuji

Matsumoto,

an

ACL

fellow

and

arenownedNLPscholarinJapan.ERNIE0VWXYZ[\]1382

!"267“$%”ERNIE&'()*+!#!"ST./0TU5678&ERNIE899

!"202,-./012345678&K-BERT655!"94DEF.FGH&IJK/@ABCRIKEN78&LUKE352!"539!:;<=>?@ABCAI278&KnowBERT62!"12LMF.NOBPQ34RP78&HittER本成果之一

ERNIE

的开源影响知识增强的句级语言建模方法

ERNIEComparisonofERNIEwithSimilar

Open-SourceModelsRepresentativeOrganizations“forking”ERNIEInternationalDomestic1382stars

267forksERNIE,jointlyreleasedbyTsinghuaUniversityandHuawei899stars

202forksK-BERT,

co-releasedbyPekingUniversityandTencent655stars

94forksLUKE,releasedbyRIKEN,Japan’sappliedscienceresearchinstitute352stars

53forksKnowBERT,

releasedbyAllenInstitutefor

AI(AI2)62stars12forksHittER,releasedbyMicrosoftResearchTheOpen-sourceImpactofOneofThisAchievements,ERNIE具有国际认可度的语言与知识融通系列学术论文Knowledge-enhancedSentence-levelLanguageModelingMethodERNIEA

series

of

internationally

recognized

academic

papers

on

the

fusion

of

lan-guageandknowledge具有国际影响力的语言与知识融通开源系统本成果5

篇代表性论文得到了国际学术界较为广泛的关注,GoogleAn

internationally

influential

open-source

system

for

the

fusion

of

languageScholar

引用共

2697

次(最高单篇引用1250

次)。如:本成果的代表性the

world's

leading

influences

in

the

fieldandknowledgeof

deep

learning

for

natural

language论文之一在国际顶会

ACL

2019

发表的

660

余篇论文中学术影响力名列前基于该方法体系,我们在最具影响的国际开源平台

GitHub

上发布integration

with

knowledge.

Notably,

theforkers

include

tech

giants

like

Google,Microsoft,

Alibaba,

Tencent,

JD.com,

and茅;美国三院院士

Li

Fei-Fei

在其重要论文中指出本成果取得了当时语义了

4

个开源代码,形成了一套语言与知识融通的深度学习开源系统。共获评测的最好性能;著名

Word2Vec

模型的提出者Tomas

Mikolov

也在其2000

多个星标,500

余次复刻,在语言与知识融通的自然语言深度学习Baidu.

Our

achievement

has

been

suc-重要论文中提及本成果;美国国家医学院院士、MIT

教授

Peter

Szolovits方向上的开源影响居世界领先之列,复刻者包括谷歌、微软、阿里巴巴、cessfully

implemented

in

Huawei

Cloud,serving

over

150

countries

and

regionswith

significant

results

(Currently,

HuaweiCloud

holds

the

second-largest

marketshare

in

China

and

ranks

fifth

globally.It

serves

more

than

150

countries

andregions,

boasts

over

30,000

partnersworldwide,

accommodates

2.6

million

de-velopers,

and

has

listed

more

than

6,100applications

in

its

cloud

marketplace,making

it

highly

influential

on

the

globalstage).腾讯、京东、百度等科技公司。本成果己成功应用于华为云,服务

150

余知识库全面对接,发展出

c-ERNIE

医学模型和医学领域智能问答系统个国家和地区,取得良好效果(华为云目前市场份额中国排第二、世界排M-cERNIE。引用者还包括美国文学与科学院院士、斯坦福大学教授

Dan第五,服务

150

多个国家和地区,全球有超过

3

万家合作伙

伴,260

万Jurafsky,ACL2020

主席

、慕尼黑大学讲席

教授

Hinrich

Schütze,ACM/开发者,云市场上架应用超过6100个,在全球范围

具有较大影响力)。AAAI

会士、斯坦福

SAIL

实验室主任

Christopher

Manning,ACL

会士、日本著名

NLP

学者Yuji

Matsumoto

等。Based

on

this

algorithmic

framework,

we

have

released

4

open-source

software

onGitHub,themostinfluentialinternationalopen-sourceplatform,constitutingadeeplearn-ing

open-source

system

for

the

integration

of

language

and

knowledge.

This

system

hasgarnered

over

2,000

stars

and

has

been

forked

more

than

500

times,

ranking

it

amongThe

five

representative

papers

of

this

achievement

have

garnered

considerable

attentionfrom

the

international

academic

community,

with

a

total

of

2,697

citations

on

Google004005PAGEPAGE科技之魅Charm

of

Science

and

TechnologyPeter

Szolovits!""#$%&&'AAAI('!"$%)*%&+,-.·/012345678

9

:

;

<

%

=

IBM

>

?

@

A

BBioNLP2020

C

D

E

F

G

H

I

JERNIE

B%KLMNOPERNIEQRSTUVBWXYZN=$%[\]^_`aNbcA$%c-ERNIEdM-cERNIENe6f2BERTBghijklCDmnnopqrstERNIEN17uvw

ERNIENxycERNIEzM-cERNIE

{vw

43ukcERNIEB|}~Ä]EÅÇ`ÉÑÖmERNIEÜáJàâ本成果典型引用Peter

SzolovitsFellowoftheNationalAcademyofMedicine,AAAIFellow,The

AmericanMedicalInformatics

Association's"MorrisF.

Collen

Award

ofExcellence"In

the

BioNLP2020

paper

jointlyreleased

by

MIT

and

IBM,

they

highlypraised

ERNIE.

They

adopted

ERNIEas

the

foundationalframework

fortheirresearch,

fully

integrated

it

withmedical

knowledge

bases,

resulting

inthe

development

of

the

medical

c-ERNIE

and

M-cERNIE,

achievingexperimental

results

surpassing

BERT.The

paper

dedicated

an

entire

chapterto

detailing

ERNIE,

mentioning

it

17times,

and

with

the

inclusion

ofcERNIE

and

M-cERNIE,

ERNIE

wasreferencedatotalof43times.The

open-source

repository

for

cERNIEprovides

specific

instructions

on

how

touseERNIE.ATypicalCitationofThisAchievement006007PAGEPAGE科技之魅Charm

of

Science

and

Technology视觉媒体的层次化内容感知北京交通大学数字媒体信息处理团队和南开大学媒体计算实验室围object?

What

categories

do

these

pixelsbelong

to?

How

can

these

categoriesbe

further

subdivided?"

The

scope

ofthe

research

encompasses

image-levelmulti-object

perception,

object-level

spa-绕视觉媒体的层次化内容感知项目,以视觉媒体为主要研究对象,系统深入地研究了视觉内容层次化感知的相关理论和方法,形成了从图像级、物HierarchicalContentPerceptionofVisualMedia体级到像素级粗粒度及细粒度的递进感知理论和解决方案,回答了“图像有何物体,物体有何像素,像素是何类别,类别如何细分”的系列问题。tial

perception,

pixel-level

coarse-grainedperception,

and

pixel-level

fine-grained所涉及的研究内容包括图像级多物体感知、物体级位置感知、像素级粗粒度感知、像素级细粒度感知等。8

篇代表性论文成果均发表在国际顶级期刊

/

会议上,Google

引用超

6000

多次,部分论文为各自研究方向的早perception.

Eight

seminal

papers

havebeen

published

in

international

journalsandconferences,amassingover6,000ci-tations

on

Google

Scholar.

Some

of

these期开拓性研究成果,并对相关方向的后续发展具有重要引领作用。成果papers

represent

pioneering

contributions得到了图灵奖获得者及

100

多位国际电气与电子工程师协会会士(IEEEintheirrespectiveresearchdirectionsandhave

significantly

influenced

subsequentdevelopments

in

related

fields.

The

workhas

garnered

attention

from

Turing

Awardwinners

and

over

100

IEEE

Fellows.

Ad-ditionally,

some

of

the

technologies

havebeen

integrated

as

standard

The

capa-bilities

in

hundreds

of

millions

of

Huaweismartphones.Fellow)

的关注,部分技术作为标配功能运行于上亿部华为旗舰手机上。The

Digital

Media

Information

Processing

Team

at

Beijing

Jiaotong

University,

in

partner-ship

with

the

Media

Computing

Laboratory

at

Nankai

University,

centered

their

researchon

hierarchical

content

perception

in

visual

media.

The

initiative

delves

systematicallyinto

the

theories

and

methodologies

related

to

hierarchical

perception

of

visual

content,establishingaprogressiveframeworkthatspansfromimage-levelandobject-leveltopix-el-level

perception,

both

in

coarse

and

fine-grained

resolutions.

This

research

addressesa

series

of

questions

such

as

"What

objects

are

in

the

image?

What

pixels

constitute

the图像级、物体级到像素级的递进层次化视觉内容感知理论和解决方案TheoreticalandPracticalApproachesto

ProgressiveHierarchicalVisualContentPerception:

FromImage-LeveltoObject-LeveltoPixel-Level北京交通大学BeijingJiaotongUniversity课题组研究成果系统性地回答了“图像有何物体,物体有The

research

outcomes

from

the

project

systematically

addressfundamental

questions

in

computer

vision

research,

such

as

"What

objects何像素,像素是何类别,类别如何细分”这一系列计算机南开大学视觉研究的基础问题are

present

in

the

image?

What

pixels

make

up

these

objects?

To

whichcategories

do

these

pixels

belong?

How

can

these

categories

be

furthersubdivided?"NankaiUniversity本研究揭示了不同层次化视觉内容理解任务的内在关联,促进进一步地,在像素级粗粒度感引言了视觉感知研究的发展知层面,揭示了图像级语义信息同如何模拟大脑的认知机制,实现高效且层次化的视觉内容感知一直是计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论