8.2 函数与数学模型 原卷版_第1页
8.2 函数与数学模型 原卷版_第2页
8.2 函数与数学模型 原卷版_第3页
8.2 函数与数学模型 原卷版_第4页
8.2 函数与数学模型 原卷版_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.2函数与数学模型【考点梳理】考点一:函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=eq\f(k,x)+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数型函数模型f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)对数型函数模型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数型模型f(x)=axn+b(a,b为常数,a≠0)考点二:应用函数模型解决问题的基本过程1.审题——弄清题意,分清条件和结论,理顺数量关系,初步选择模型;2.建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;3.求模——求解数学模型,得出数学模型;4.还原——将数学结论还原为实际问题.【题型归纳】题型一:利用二次函数模型解决实际问题1.(2023上·湖南长沙·高一长郡中学校考期中)如图,把直截面半径为的圆柱形木头锯成直截面为矩形的木料,如果矩形的一边长为(单位:),面积为(单位:),则把表示为的函数的解析式为()A. B.,C. D.,2.(2023上·河北张家口·高一统考期中)2023年杭州亚运会已经圆满结束.杭州凭借其先进的体育基础设施和丰富的办赛经验,成为举办体育赛事的理想城市.为了助力杭州的绿色发展,进一步做好垃圾分类处理,当地某企业引进一个把厨余垃圾加工处理为某化工产品的项目.已知该企业日加工处理厨余垃圾量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理厨余垃圾量x之间的函数关系可近似的表示为且每加工处理1吨厨余垃圾得到的化工产品的售价为110元.(1)该企业日加工处理厨余垃圾量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业日加工处理厨余垃圾处于亏损状态还是盈利状态?(2)为了使该企业可持续发展,政府决定对该企业进行财政补贴,要求企业从以下两种方案中选择其中的一种.方案一:每日进行定额财政补贴,金额为2300元;方案二:根据日加工处理厨余垃圾量x进行财政补贴,金额为30x元.如果你是企业的决策者,从企业获得最大利润的角度考虑,你会选择哪种补贴方案?为什么?题型二:分段函数模型3.(2023上·广东河源·高一龙川县第一中学校考期中)佗城位于龙川县最南端,内有百岁街、越王井、赵伦故居、正相塔、越王庙、孔庙、考棚等旧址及古建筑,某开发商计划2024年在伦城景区开发新的游玩项目,全年需投入固定成本400万元,若该项目在2024年有万名游客,则需另投入成本万元,且,该游玩项目的每张门票售价为80元.(1)求2024年该项目的利润(万元)关于游客数量(万人)的函数关系式(利润=销售额成本).(2)当2024年游客数量为多少时,该项目所获利润最大?最大利润是多少?4.(2023上·湖北孝感·高一湖北省孝感市第一高级中学校联考期中)以人工智能、航空航天、生物技术、光电芯片、信息技术、新材料、新能源、智能制造等为代表的高精尖科技,属于由科技创新构成的物理世界,是需要长期研发投入,具有极高技术门槛和技术壁垒,最近十年,某高科技企业自主研发了一款具有自主知识产权的高级设备,并从2023年起全面发售.经测算,生产该高级设备每年需固定投入固定成本500万元,每生产百台高级设备需要另投成本万元,且,每百台高级设备售价为80万元,且高级设备年产量最大为10000台.(1)求企业获得年利润(万元)关于年产量(百台)的函数关系式;(2)当年产量为多少时,企业所获年利润最大?并求最大年利润.题型三:分式型函数模型5.(2023上·安徽·高一校联考期中)第19届亚运会2023年9月23日至10月8日在浙江杭州举办,亚运会三个吉祥物琼琼、宸宸、莲莲,设计为鱼形机器人,同时也分别代表了杭州的三大世界遗产良渚古城遗址、京杭大运河和西湖,他们还有一个好听的名字:江南忆.由市场调研分析可知,当前“江南忆”的产量供不应求,某企业每售出千件“江南忆”的销售额为千元.,且生产的成本总投入为千元.记该企业每生产销售千件“江南忆”的利润为千元.(1)求函数的解析式;(2)求的最大值及相应的的取值.6.(2023上·河北石家庄·高一石家庄二中校考期中)某生产企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新,通过市场分析,生产此款全年需投入固定成本250万,每生产(千部),需另投入成本万元,且.由市场调研知,每部售价万元,且全年内生产的当年能全部销售完.(1)求出2023年的利润(万元)关于年产量(千部)的函数解析式(利润=销售额-成本);(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?题型四:指数函数模型7.(2023·全国·高一课堂例题)人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为制定一系列相关政策提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型,其中t表示经过的时间,表示时的人口数,r表示人口的年平均增长率.表是1950~1959年我国的人口数据资料:年份1950195119521953195419551956195719581959人口数/万55196563005748258796602666145662828645636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,那么大约在哪一年我国的人口数达到13亿?8.(2023下·上海黄浦·高一上海市大同中学校考期末)由于突发短时强降雨,某中学地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量(单位:)与时间(单位:)成正比,小时后雨停,消防部门立即使用抽水机进行排水,此时与的函数关系式为(为常数),如图所示.(1)求关于的函数表达式;(2)已知该地下车库的面积为,当积水深度小于等于时,师生方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,师生才能进入地下车库?题型五:对数函数模型9.(2023上·浙江宁波·高一镇海中学校考期中)声强级(单位:分贝)由公式:给出,其中为声强(单位:瓦/平米),基准声强瓦/平米.(1)已知正常听力范围是25分贝以内;听力损失在2640分贝为轻度耳聋;听力损失在4170分贝为中度耳聋;听力损失在7190分贝为重度耳聋.某耳聋患者听力声强范围为瓦/平米到瓦/平米,则其听力损失为何种程度耳聋?(2)某医院为布置育婴室查阅相关科学研究得知:新生要幼儿适宜声音强度应在35分贝到40分贝,有利于婴儿早教且不会影响婴儿听觉神经发育;声音超过40分贝可能会对婴儿听力产生影响,则为了宝宝的身体发育和睡眠质量,育婴室的环境声音应不超过多少瓦/平米?10.(2023上·江西南昌·高一统考期末)在不考虑空气阻力的条件下,某飞行器的最大速度为v(单位:)和所携带的燃料的质量M(单位kg)与飞行器(除燃料外)的质量m(单位kg)的函数关系式近似满足.当携带的燃料的质量和飞行器(除燃料外)的质量相等时,v约等于,当携带的燃料的质量是飞行器(除燃料外)的质量3倍时,v约等于.(1)求a,b的值;(2)问携带的燃料的质量M(单位kg)与飞行器(除燃料外)的质量m(单位kg)之比满足什么条件时,该飞行器最大速度超过第二宇宙速度.(参考数据:)题型六:幂函数模型11.(2021上·河南平顶山·高一统考期末)某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?12.(2023·全国·高一)党的十九大报告明确要求继续深化国有企业改革,培育具有全球竞争力的世界一流企业.某企业抓住机遇推进生产改革,从单一产品转为生产A、B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:所示图中的横坐标表示投资金额,单位为万元).(1)分别求出A、B两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?题型七:给定函数模型求解13.(2023上·江苏徐州·高一徐州高级中学校考期中)无人机被视为衡量科技实力、创新能力和高端制造水平的重要标志,2022年我国民用无人机总产值超过300亿元,我国无人机产业呈现出蓬勃发展的态势.现有某企业销售甲、乙两种小型无人机所得的利润分别是(单位:万元)和(单位:万元),它们与投入资金(单位:万元)的关系有经验公式,.今将3万元资金投入经营甲、乙两种小型无人机,其中对甲无人机投资(单位:万元).(1)试用表示总利润(单位:万元),并写出的取值范围.(2)求当为多少时,总利润取得最大值,并求出最大值.14.(2023上·广东佛山·高一统考期中)物体在常温下冷却的温度变化可以用牛顿冷却定律来描述:设物体的初始温度为,经过一段时间后的温度为,则,其中为环境温度,为参数.某日室温保持为20,李华在8点时用智能电热水壶烧1升水(假设加热时水温随时间的变化为一次函数,且初始温度与室温一致),8分钟后水温达到100,水壶停止工作,壶中热水开始自然冷却,8点18分时,壶中水温为60.(1)求8点起壶中水温(单位:)关于时间(单位:分钟)的函数;(2)若当日李华在1升水沸腾(水温达到100)时,恰好有事出门,于是将智能电热水壶设定为保温状态,已知智能电热水壶会自动检测壶内水温,当壶内水温高于临界值50时,设备不加热;当壶内水温不高于临界值50时,开始加热至80后停止,加热速度与正常烧水一致.问李华离开后,智能电热水壶在几点几分开始第二次加热?(结果保留整数)(参考数据:,)【双基达标】一、单选题15.(2023上·重庆·高一四川外国语大学附属外国语学校校考阶段练习)教室通风的目的是通过空气的流动,排出室内的污浊空气和致病微生物,降低室内二氧化碳和致病微生物的浓度,送进室外的新鲜空气.按照国家标准,教室内空气中二氧化碳日平均最高容许浓度应小于等于.经测定,刚下课时,空气中含有的二氧化碳,若开窗通风后教室内二氧化碳的浓度为,且随时间(单位:分钟)的变化规律可以用函数描述,则该教室内的二氧化碳浓度达到国家标准至少需要的时间为(参考数据:)()A.10分钟 B.14分钟C.15分钟 D.20分钟16.(2023上·四川成都·高三四川省成都市第八中学校校考阶段练习)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级,其中常数是听觉下限阈值,是实际声压,下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为,则()声源与声源的距离/m声压级/dB燃油汽车106090混合动力汽车105060电动汽车1040A. B.C. D.17.(2023上·四川成都·高一校考期中)纯电动汽车是以车载电源为动力,用电机驱动车轮行驶.研究发现电池的容量随放电电流的大小而改变,1898年Peukert提出铅酸电池的容量C、放电时间t和放电电流I之间关系的经验公式:,其中为与蓄电池结构有关的常数(称为Peukert常数),在电池容量不变的条件下,当放电电流为15A时,放电时间为30h;当放电电流为50A时,放电时间为,则该蓄电池的Peukert常数约为()(参考数据:,)A.0.82 B.1.15 C.3.87 D.18.(2023上·内蒙古鄂尔多斯·高一校考期中)研究发现,X射线放射仪在使用时,其发射器发出的射线强度、接收器探测的射线强度与射线穿透的介质厚度(单位:毫米)满足关系式,其中正实数为该种介质的吸收常数.工作人员在测试某X射线放射仪时,向发射器与接收器之间插入了厚5毫米的金属板,发现接收器探测到的射线强度比插入金属板前下降了90%.现想让接收器探测到的射线强度会比插入金属板前下降%.则需要向发射器与接收器之间插入金属板的厚度至少为()A.毫米 B.毫米 C.毫米 D.毫米19.(2023上·广东佛山·高一石门中学校考期中)当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约经过N年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14原有初始质量为Q,该生物体内碳14所剩质量y与死亡年数x的函数关系为()A. B.C. D.20.(2023上·江苏宿迁·高一统考期中)物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是,经过一段时间后的温度是,则,其中表示环境温度,称为半衰期.现有一杯用热水冲的速溶咖啡,放在的房间中,如果咖啡降温到需要,那么降温到,需要的时长为()A. B. C. D.21.(2023上·宁夏银川·高一银川二中校考阶段练习)声强级(单位:dB)由公式给出,其中I为声强(单位:),若学校图书规定:在阅览室内,声强级不能超过40dB,则最大声强为()A. B.C. D.22.(2023上·安徽·高一校联考竞赛)我们知道存储温度(单位:℃)会影响着鲜牛奶的保鲜时间(单位:),温度越高,保鲜时间越短.已知与之间的函数关系式为(为自然对数的底数),某款鲜牛奶在5℃的保鲜时间为,在25℃的保鲜时间为.(参考数据:)(1)求此款鲜牛奶在0℃的保鲜时间约为几小时(结果保留到整数);(2)若想要保证此款鲜牛奶的保鲜时间不少于,那么对存储温度有怎样的要求?23.(2023上·安徽·高一校联考竞赛)某品牌汽车制造厂引进了一条小型家用汽车装配流水线,本年度第一季度统计数据如下表月份1月2月3月小型汽车数量(辆)306080创造的收益(元)480060004800(1)根据上表数据,从下列三个函数模型中:①,②,③选取一个恰当的函数模型描述这条流水线生产的小型汽车数量(辆)与创造的收益(元)之间的关系,并写出这个函数关系式;(2)利用上述你选取的函数关系式计算,若这家工厂希望在一周内利用这条流水线创收6020元以上,那么它在一周内大约应生产多少辆小型汽车?24.(2023上·江西·高一校联考阶段练习)今年以来,旅游业迎来了全面复苏的喜人景象.某文旅企业准备开发一个新的旅游景区,前期投入200万元,若该景区开业后的第一年接待游客万人,则需另投入成本万元,且,该景区门票价格为64元人.(1)求该景区开业后的第一年的利润(万元)关于人数(万人)的函数关系式(利润收入成本).(2)当该景区开业后的第一年接待游客多少人时,获得的利润最大?最大利润为多少?25.(2023上·宁夏银川·高一银川二中校考阶段练习)某科研机构对某病毒的变异毒株在特定环境下进行观测,每隔单位时间T进行一次记录,用x表示经过单位时间的个数,用y表示此变异毒株的数量,单位为万个,得到如下观测数据:X(T)123456…Y(万个)…10…50…250…若该变异毒株的数量y(单位:万个)与经过x()个单位时间T的关系有两个函数模型()与(,)可供选择.(1)判断哪个函数模型更合适,并求出该模型的解析式;(2)求至少经过多少个时间单位,该变异毒株的数量不少于一亿个.【高分突破】一、单选题26.(2023上·江西赣州·高三江西省大余中学校联考期中)某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以减少对空气的污染.已知过滤过程中废气的污染物数量(单位:)与过滤时间(单位:)的关系为(是正常数).若经过过滤后消除了的污染物,则污染物减少大约需要()(参考数据:)A. B. C. D.27.(2023上·广东佛山·高一统考期中)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据和小数记录法的数据满足.已知某同学视力的五分记录法的数据为,则其视力的小数记录法的数据约为()()A.1.59 B.1.28 C.0.63 D.28.(2023上·湖南·高一校联考期中)某企业为了鼓励职工节约用水,作出了以下规定:每位职工每个月用水量不超过15吨,按每吨3元收费;每个月用水量超过15吨,超过部分按每吨5元收费.职工小王10月份的水费为70元,则小王10月份的实际用水量为()A.18吨 B.20吨 C.22吨 D.24吨29.(2023上·四川成都·高一石室中学校考期中)已知当生物死亡后,它机体内原有的碳14含量y与死亡年数x的关系为.不久前,考古学家在某遗址中提取了数百份不同类型的样品,包括木炭、骨头、陶器等,得到了一系列的碳14测年数据,发现生物组织内碳14的含量是死亡前的.则可以推断,该遗址距离今天大约多少年(参考数据,)()A.2355 B.2455 C.2555 D.2655二、多选题30.(2023上·江苏苏州·高一南京航空航天大学苏州附属中学校考阶段练习)几名大学生创业,经过调研,他们选择了一种技术产品,生产此产品获得的月利润(单位:万元)与每月投入的研发经费(单位:万元)有关.当每月投入的研发经费不高于万元时,,研发利润率.他们现在已投入研发经费万元,则下列判断正确的是()A.投入万元研发经费可以获得最大利润率B.要再投入万元研发经费才能获得最大月利润C.要想获得最大利润率,还需要再投入研发经费万元D.要想获得最大月利润,还需要再投入研发经费万元31.(2023上·高一课时练习)某企业生产一种机器的固定成本为万元,但每生产100台时又需可变成本万元,市场对此商品的年需求量为500台,销售收入函数为(万元),其中x是产品售出的数量(单位:百台),则下列说法正确的是()A.利润y表示为年产量x的函数为B.当年产量为475台时企业所得的利润最大,为万元C.当年产量(单位:百台)时,企业不亏本D.企业不亏本的最大年产量为500台32.(2023上·浙江宁波·高一浙江省宁波市鄞州中学校联考期中)某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系(,k,b为常数).若该食品在0℃的保鲜时间是120小时,在20℃的保鲜时间是30小时,则()A.且B.在10℃的保鲜时间是60小时C.要使得保鲜时间不少于15小时,则储存温度不低于30℃D.在零下2℃的保鲜时间将超过150小时33.(2023上·辽宁辽阳·高一统考期中)某商家为了提高一等品M的销售额,对一等品M进行分类销售.据统计,该商家有200件一等品M,产品单价为元.现计划将这200件一等品分为两类:精品和优品.其中优品x件(,),分类后精品的单价在原来的基础上增加2x%,优品的单价调整为元(),因市场需求旺盛,假设分类后精品与优品可以全部售完.若优品的单价不低于分类前一等品M的单价,且精品的总销售额不低于优品的总销售额,则n的值可能为()A.5 B.6 C.7 D.8三、填空题34.(2023上·重庆·高一重庆巴蜀中学校考期中)已知某种果蔬的有效保鲜时间(单位:小时)与储藏温度(单位:)近似满足函数关系(,为常数,为自然对数底数),若该果蔬在的保鲜时间为216小时,在的有效保鲜时间为8小时,那么在时,该果蔬的有效保鲜时间大约为小时.35.(2023上·上海浦东新·高一上海市进才中学校考期中)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为,其中L表示每一轮优化时使用的学习率,表示初始学习率,D表示衰减系数,G表示训练迭代轮数,表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为衰减速度为22,且当训练迭代轮数为22时,学习率衰减为,则学习率衰减到以下(不含)所需的训练迭代轮数至少为.36.(2023上·云南昆明·高一昆明八中校考期中)如图,某池塘里浮萍的面积y(单位:)与时间t(单位:月)的关系为.关于下列说法正确的是.①浮萍的面积每月的增长率为2;②浮萍每月增加的面积都相等;③第5个月时,浮萍面积不超过;④若浮萍蔓延到,,所经过的时间分别是,,,则.37.(2023上·广东广州·高一广州市协和中学校考期中)国家速滑馆又称“冰丝带”,是北京2022年冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间的关系(为最初污染物数量).如果前2个小时消除了的污染物,那么污染物消除至最初的还要小时.四、解答题38.(2023上·重庆·高一重庆八中校考阶段练习)塑料袋给我们生活带来了方便,但对环境造成了巨大危害.某品牌塑料袋经自然降解后残留量与时间年之间的关系为为初始量,为光解系数(与光照强度、湿度及氧气浓度有关),为塑料分子聚态结构系数.(参考数据:)(1)已知塑料分子聚态结构系数是光解系数的90倍,若塑料自然降解到残留量为初始量的时,大约需要多少年?(2)为了缩短降解时间,该品牌改变了塑料分子聚态结构,其他条件不变.已知2年就可降解初始量的.要使残留量不超过初始量的5%,至少需要多少年?39.(2023上·安徽·高一和县第一中学校联考期中)某快递公司为降低新冠肺炎疫情带来的经济影响,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x台机器人的总成本为(单位:万元).(1)应买多少台机器人,可使每台机器人的平均成本最低;(2)现按(1)中的数量购买机器人,需要安排m人将物件放在机器人上,机器人将物件送达指定分拣处.经过实验知,每台机器人日平均分拣量为(单位:件).求引进机器人后,日平均分拣量的最大值.40.(2023上·广西·高一校联考阶段练习)首届全国学生(青年)运动会于2023年11月5日在广西南宁举行,假设你是某纪念章公司委托的专营店销售总监.现有一款纪念章,每枚进价5元,同时每销售一枚这种纪念章需向学青会组委会上交特许经营管理费2元用于活动公益开支,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元..(1)请你写出专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式;(2)当每枚纪念章销售价格为多少元时,该专营店一年内的利润最大?最大利润为多少元?41.(2023上·四川成都·高一石室中学校考期中)酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的含量变化规律的“散点图"”如图,该函数近似模型如下:,又已知酒后1小时测得酒精含量值为毫克/百毫升,根据上述条件,解答以下问题:(1)当时,确定的表达式;(2)喝1瓶啤酒后多长时间后才可以驾车?(时间以整分钟计算)(附参考数据:)42.(2023上·河南·高一校联考阶段练习)定义:将人每小时步行扫过地面的面积记为人的扫码速度,单位是平方公里/小时,如扫码速度为1平方公里/小时表示人每小时步行扫过的面积为1平方公里.十一黄金周期间,黄山景区是中国最繁忙的景区之一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论