版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE28IntroductiontoreinforcedconcreteandearthworksAbstractAsadesignermustfirstclearthebuildingstructureitselfwasdesignedandintensitylevels,aswellasrelatedissuesin-depthdiscussionandresearch,thispaperdescribesonthereinforcedconcrete,earthworkengineeringknowledge,letmorein-depthunderstandingofthisDiscussesthekey,andtherationalapplicationofknowledgetohelpusdesignmoreexcellentbuildingKeywords:concrete;earthwork;structuralsafety1ReinforcedConcretePlainconcreteisformedfromahardenedmixtureofcement,water,fineaggregate,coarseaggregate(crushedstoneorgravel),air,andoftenotheradmixtures.Theplasticmixisplacedandconsolidatedintheformwork,thencuredtofacilitatetheaccelerationofthechemicalhydrationreactionlfthecement/watermix,resultinginhardenedconcrete.Thefinishedproducthashighcompressivestrength,andlowresistancetotension,suchthatitstensilestrengthisapproximatelyonetenthlfitscompressivestrength.Consequently,tensileandshearreinforcementinthetensileregionsofsectionshastobeprovidedtocompensatefortheweaktensionregionsinthereinforcedconcreteelement.Itisthisdeviationinthecompositionofareinforcesconcretesectionfromthehomogeneityofstandardwoodorsteelsectionsthatrequiresamodifiedapproachtothebasicprinciplesofstructuraldesign.Thetwocomponentsoftheheterogeneousreinforcedconcretesectionaretobesoarrangedandproportionedthatoptimaluseismadeofthematerialsinvolved.Thisispossiblebecauseconcretecaneasilybegivenanydesiredshapebyplacingandcompactingthewetmixtureoftheconstituentingredientsareproperlyproportioned,thefinishedproductbecomesstrong,durable,and,incombinationwiththereinforcingbars,adaptableforuseasmainmembersofanystructuralsystem.Thetechniquesnecessaryforplacingconcretedependonthetypeofmembertobecast:thatis,whetheritisacolumn,abean,awall,aslab,afoundation.amasscolumns,oranextensionofpreviouslyplacedandhardenedconcrete.Forbeams,columns,andwalls,theformsshouldbewelloiledaftercleaningthem,andthereinforcementshouldbeclearedofrustandotherharmfulmaterials.Infoundations,theearthshouldbecompactedandthoroughlymoistenedtoabout6in.indepthtoavoidabsorptionofthemoisturepresentinthewetconcrete.Concreteshouldalwaysbeplacedinhorizontallayerswhicharecompactedbymeansofhighfrequencypower-drivenvibratorsofeithertheimmersionorexternaltype,asthecaserequires,unlessitisplacedbypumping.Itmustbekeptinmind,however,thatovervibrationcanbeharmfulsinceitcouldcausesegregationoftheaggregateandbleedingoftheconcrete.Hydrationofthecementtakesplaceinthepresenceofmoistureattemperaturesabove50°F.Itisnecessarytomaintainsuchaconditioninorderthatthechemicalhydrationreactioncantakeplace.Ifdryingistoorapid,surfacecrackingtakesplace.Thiswouldresultinreductionofconcretestrengthduetocrackingaswellasthefailuretoattainfullchemicalhydration.Itisclearthatalargenumberofparametershavetobedealtwithinproportioningareinforcedconcreteelement,suchasgeometricalwidth,depth,areaofreinforcement,steelstrain,concretestrain,steelstress,andsoon.Consequently,trialandadjustmentisnecessaryinthechoiceofconcretesections,withassumptionsbasedonconditionsatsite,availabilityoftheconstituentmaterials,particulardemandsoftheowners,architecturalandheadroomrequirements,theapplicablecodes,andenvironmentalreinforcedconcreteisoftenasite-constructedcomposite,incontrasttothestandardmill-fabricatedbeamandcolumnsectionsinsteelstructures.Atrialsectionhastobechosenforeachcriticallocationinastructuralsystem.Thetrialsectionhastobeanalyzedtodetermineifitsnominalresistingstrengthisadequatetocarrytheappliedfactoredload.Sincemorethanonetrialisoftennecessarytoarriveattherequiredsection,thefirstdesigninputstepgeneratesintoaseriesoftrial-and-adjustmentanalyses.Thetrial-and–adjustmentproceduresforthechoiceofaconcretesectionleadtotheconvergenceofanalysisanddesign.Henceeverydesignisananalysisonceatrialsectionischosen.Theavailabilityofhandbooks,charts,andpersonalcomputersandprogramssupportsthisapproachasamoreefficient,compact,andspeedyinstructionalmethodcomparedwiththetraditionalapproachoftreatingtheanalysisofreinforcedconcreteseparatelyfrompuredesign.Concretestresstest1TestIntroductionThetensilepropertiesofconcretecanbeenhancedsubstantiallybyincorporatinghighstrengthandsmalldiametershortsteelfibers.whichleadstothesteelfiberreincedconcrete(SFRC).InconventionalSFRC,thesteelfibercontentisusuallywithintherangeofO.2%-2%byvolume.Atsuchalow6hercontent.thetensileresponseofSFRCwouldassumeanonhardeningtype.whichischaracterizedbythewideningofasinglecrack,similartoanunreinforcedconcrete.Thecontributionoffibersisapparentinthepost-crackingresponse,representedbyanincreaseinpost-crackingductilityduetotheworkassociatedwithpulloutoffibersbridgingafailurecrack.However,improvementsinsomeotherproptiesareinsignificant.Moreover,thesofteningsegmentofthestress-straincurveofSFRCwithsuchalowfibercontentunderuniaxialtensiondifficulttobegotwithnormalexperimentalmethods.Manyworkshavebeendonetofmdasuitableandrelativelyeasywaytoanalyzethetensilecharacteristics.Anditwasreportedthatthewholecurvecouldbegotonanonnaltestingmachinewithstiffeningcolponentsadded.Inthisarticle,thestress-strainbehaviorofSFRCunderuniaxialtensionWasanalyzedfordifferentopesoffiber.ThetensilecharacteristicsofSFRCinfluencedbythematrixstrengthandthesteelfibercontentwerestudiedalso.Inaddition,thestress-straincurvesofhighstrengthSFRCwithdifferentfactorswerewellacquired.Themechanismoffiberreinforcedconcretetoenhanceresearch,toobtainsteelfiberreinforcedconcreteintensioncurveofthewholeprocess,usingthemostappropriatemethodofaxialtension,buttomakeStethetestingmethodsimproved,andthetestingmachinemusthaveenoughstiffnesstoensurethetestingprocessstability.Iswellknowninengineeringpractice,process,technologyandeconomicconditionsduetoconstructionconstraints,SFRC-dopedfibervolumeintherateofgenerallynotmorethan2%,whilemostoftheengineeringexalllple,thefiberfractionareabout1%.InthispaperthedesignoftheaxialtensionSFRCmaterialtesting,fiberdosagetotake1%,andusingdifferentopesoffiber-reinforcedforms,wereanalyzed.2ExperimentalContentThespecimensweretestedona601duniversaltestingmachine.Fourhighsteelbarswereaddedtoenhancethestiffuessofthetestingmachine.Inaddition,spherichingeswereusedtoabatetheinitialaxialeccentricityofthespecimens..Itwasensuredthatspecimensshouldbepulledunderuniaxialtensionbyadjustingthefourhighstrengthboltswhichconnectthespecimenstothecrossbeam.Andthedifferencebetweenthetensilestrainsoftheoppositesidesofthespecimenshouldbelessthan15%oftheirmeanvalue.Whenthefibercontentwaslow(0and0.5%byvolume),thecyclicquirethewholestress-strain.2.1MaterialsFour叩pesofsteelfibersshowninTablewerechosenforthistest.Threeofthesefibers(Fl,F2andF3)werehookedendandtheotherone(F4)wassmooth.Threeconcretemixtures,showninTable2,wereinvestigated.WaterreducingagentswereusedinC60andC80mixes(DK-5madebyDalianStructureResearchInstituteandSikamadeinSwitzerlandrespectively).ThecompressivestrengthsoftheseC30,C60,C80mixes28daysusing150mmx150mmx150mmcubes.Averagedresultsfor3specimensaregiveninTable2.OrdinaryPortlandcement(yieldedbyDalianHuanengOnodaCementCompany)of32.5and52.5(accordingtoChinastandard)werechosen.Riversand(modulusoffmenessis2.6)andcrushedlimestoneaggregates(5-20Bin)wereused.TableMatrixStrengthgradeCementuJcSandSandCrushedWaterCompressivecodeOfcementKg/m3rahrahoKg/m3StrnereducingSength(lSO)。Kg/m3MpaC3032.54500.440.36667115537.07C6052.55000.350.336021223DK-567.59C8052.56000.290.315351190Sika82.96SpecimenThetensileSpeCllenwasbondedtosteelpaddingplatesatbothendsbytygoweld.Atotalof110specimensweredividedinto22groupsaccordingtocertainparameters.TheparametersofthesespecimenseshowninTable3.2.3ItemsAttheageof28days.plainconcreteandsteelfiberconcretespeciInensweretestedfortensilestrength,respectively.Thetensilestress-straincveswereacquired.Manyothertensilecharactersofthehighstrengthsteelfiberconcretesuchastensilework,etcwerecalculateda1so.Enhancedclasssteelfiberreinforcedconcretetoughnesscategorythanthestrengthofsteelfiberreinforcedconcreteanaverageof13%;whilecrackingfromthebasictotheαackwidthof0.5mminterval(thecorrespondingstrainofabout2000με)showedtherenerrintegral:tougheningclasssteelfiberreinforcedconcreteenhancedclassthanthefractureenergyofsteelfiberreinforcedconcreteanaverageof20%.omTable3alsoshowsthatmostoftheSFRCfrrstpeakcorrespondstothelimitoftensilestrainvalueandplainconαeterather,inthe100μεaround,indicatingalowrateoffiber-containingincorporationinimprovingtheroleofultiInatetensilestrainofconcretenoteverobvious.letougheningclassSFRCsecondpeakcorrespondstoamuchgreaterstrain,upto1000,Fromthissecondpeakhasgreatlyenhancedtheappeanceoftoughness.DRAXFìberbecauseofthelengthofotherthreekindsoffiberlengthof2tiInesthefracturetoughnessandbetterinthetestcurvecanbeseeninthestrainisattained,theloadcontinuestomaintainahighlevel0fintensity,untilthestrainwhentheloadsoastomaintain10000μεitspeaklevelof50%.3ResultsandDiscussion3.1CrackstressandultinlatetensilestrengthThecracksessandultimatetensilestrengthofdierentspeciInenselistedinTable3.Theadditionofsteelfibersintoconcreteincreaseditscrackstressandultinlatetensilestrength.AndtheratiosofthesetwoparametersofSFRCtothoseofplainconcreue(withthesamemixproportion)aregiveninTable3,too.3.1.1Effectofmatrixstrengthan(1fibertypeFromtable3.ItcanbeseenthattheeffectsofsteelfibersOncrackstressarelittleinfluencedbythematsixstrength.Thatistosay.Whenthematrixstrengthinαeases,theratiosofcrackstressesofSFRC(withthesametypeoffiberscontained)tothoseofplainconcreteoneswiththesamemixproportioneinvariable.However,theconditionforultimatetensilestrengthisdifferent.Whenthematrixstrengthincreases.theseratiosofultimatetensilestrengths(showninTable3)varydissiInilarlyaccordingtothetypeofsteelfiber.Moreover.theincrementsarebiggerthanthoseofcrackstress.TheheighteningefficiencyoffiberFlforultimatetensilestrengthrisesmatrixstrengthincreases.Itisbecausethatthestrengofthiskindoffiberisveryhigh(>1100MPa).Nofiberbrokenwasobservedduringthetestandthehooked-endsofthefiberswerestraightenedwhenthematrixsngthwashigh(C80).Thehigherthematrixsngth.thiskindofsteelfibertakesonitssengtheningeffectmoreefficientlyfortheincreasingofbondstress.ThestrengthsoffibersF2andF3aremid-high(>700MPa).Theyallhavehookedendsandbothoftheirsurfacesarecose.Whenthematrixstrengthwashigh(C80).fiberbreakingoccurredinthetest.AndthisphenomenoniInpairedtheheighteningefficiencyofthesetwokindsofsteelfiber.Sotheyshouldbeusedinmiddlestrengthconcretetoexerttheirstrengtheningeffectmoreefficiently.FiberF4issmooth.anditsbondstresswithmatrixiscomparativelylow.T}1ereitsstrengtheningeffectis1essnotablethanthoseofotherkindsoffiber.Becauseofthelowbondstress.nofiberbrokenwasdaoundduringthetestanditsheighteningefficiencyforultimatetensilestrengthrisesasmatrixstrengthincreases.3.1.2EffectoffibercontentTheeffectoffibercontentonthecrackstressandu1.ultimatetensilestrengthwasinvestigatedforSFRCcontainedfiberF3.Andthefibercontentvariedfrom0.5%to1.5%byvolume(showninTable3).ItcanbeseenonFig.1andFig.2thatasthefibercontentmcreases.ThecrackstressandultimateengthofSFRCimproveobviously.Moreover.therisingtrendsofthecurvesinthesetwofiguresarespendouslysimilar.Inotherwords,theectoffibercontentonthecharactersoftensilestressofSFRCispositiveandconsistent.Table4FiberpefactorsFibercodeatF10.642F20.862F30.794F40.589ThetensilestrengthofSFRCcanbecalculatedwiththelowformula:where,istheultimatetensilestrengthofSFRC;theultimatetensilestrengthofplainconcretewiththesamemixingproportion;a,thefibertypefactor,lIIJ:=ρ'1-;;,PJwhichisshownTable4;.u.isthefibercontentofvolumeandl/distheaspectratioofsteelfibers.3.2Tensilestrainandtoughnesscharacters3.2.1CrackstrainandthestrainatpeaktensileloadThetensilestrainswereacquedbyaveragingthereadingsofthedisplacementsensors:fixedaroundthespecimen.Inaddition,thespecimenswhosedifferencebetweenthetensilestrainsofitsoppositesidesislargerthan15%oftheirmeanvaluewereblankedout.ThecrackstrainorthestrainsatpeaktensileloadofSFRCaremuchbiggerthanthoseofplainconcrete(asshowninTable5).Andtheincrementsgoupasthernatrixstrengthorthefibercontentincreases.Comparedtothatoncrackstrain.theincrescenteffectofsteelfiberonthestrainatpeaktensileloadismoreremarkable.3.2.2TensileworkandtoughnessmodulusThetensileworkwasdefinedastheteaundertheload-displacementcurvefrom0to0.5rain.Moreover,atensiletoughnessmoduluswasintroduced(showninTable5(2)where,fftistheultimatetensilestrengthofSFRC;A,theareaofthecrosssectionofspeclmen.BoththesetwoparameterswerequotedtoevaluatethetoughnesscharactersofSFRCunderuniaxialtension.Thetensiletoughnessmodulusisadimensionlessfactor.Comparedtowhatthetensileworkdoes.itcanavoidtheinfluenceoftheultimatetensilestrengthwhenstudyingthetoughnessofSFRC.Itca11beunderTable5thatthealteringregularitiesofthesetwofactorsalongwiththechangesofmatrixstrengthandfibercontentareapprmate.Therefore,theemphasisofanalysisputonthetoughnessmodulus.TherelationshipbetweenthematrixstrengthandtoughnessmodulusofSFRCwithfourkindsofsteelfiberareshowninFig.3.whosefibercontentsareall1.0%byvolume.togetherwiththatrelationshipofplainconcrete.ThetensiletoughnessofSFRCismuchbetterthanthatofplainconcrete.Thetensiletougheningeffectofsteelfiberisremarkable.Asthematrixstrengthrises.Thebrittlenessofconcreteincreasesobviously,andthenthetensiletoughnessofplainconcretefallsdown.ThisphenomenonwasalsofoundonspecimenscontainingfiberFlandF2.τ'hepu11ingoutoffiberFlfromconcreteisinfactaprocessofhook-end'sbeingstraightenedandthematrix'sbeingcrushedaroundthehook-end.Whenthehookedendisstraightenedatlast.thetensileloadfallsdownquickly.Thehighertheconcretestrength.thelargertherigidityofthematrixandtheshorterthetimethattheprocessmentionedabovelasts.Thus.thestress-straincurvefa11sdownmorequickly,andthenthetoughnessmodulusdecreases.However,thetougheningeffectoffiberFlisthebestamongthesefourkindsofsteelfiber.TheωpectratiooffiberF2istheleast。andwhenthematrixstrengthishigh,fiberbreakingoccurs.Therefore,thetoughnessmodulusfa11sdowncontinua11yasthematrixstrengthrises.ThetoughnessmoduluioffibersF3andF4risetogetherwiththematrixstrength.Boththetwokindsoffiberaresnippedandtheirsurecesecoarse.Therefore.theqictionisdominantintheproportionsofbondstress.Becausetheictionbetweenfiberandmatrixincreasesalongwiththematrixstrength,andthewholepullingoutofthesekindsofbondstatusisacontinuousprocess,therisingofmatrixstrengthplaysapositiveroleinimprovingthetoughnessofSFRCcontainingthesetwokindsoffiber.ThedifferencebetweenthetwokindsoffibersisthatfiberF3hashookedends,whichmakesfiberF3havebettertougheningeffectsthanfiberF4whenthematrixstrengthiscompativelylow(C30andC60).Whenthematrixstrengthishigh(C80),fiberbreakingimpairesthetougheningeffectoffiberF3.AndthefunctionoffiberF4exceedsthatoffiberF3inreverse.3.3Stress-straincuesofSFRCunderuniaxialtensionThepica1stress--straincurvesofSFRCunderuniaxialtensionshowninFigs.4l1(onecurveischosenforeachgroupofspecimentokeepthegraphsordly).Figs.48expressthevariationofcurvesalongwiththeincreasingofthematrixstrength,andFigs.9一11expressthevariationalongwiththechangeofthefibercontentoffiberF3.Thecurveconsistsofelasticsection.elastic-plasticsectionandfa11ingsection(soeningsection).Pointsofcontraflexureexitinthefallingsectionofthecurve.Itcanbeseenfromthesefiguresthatthematrixstrengthishigher,thestress-straincurves11downfaster,andtherisingofthefibercontentcanmuchimprovethechubbinessofthesecurves.Moreover,thetypeofsteelfiberhassomeeffectontheshapeofthestress-straincurve.ThecurvesoffiberFlaretheplumpiestofthemal1.ThesecondpeakWobservedinthecurvesoffiberFlatthestrainofabout10000ue.ThisphenomenonexpressesagoodtougheningeffectoffiberFl.ThecurvesoffibelsF2andF3areladder一likewhenthematrixstrengthishighbecauseoffiberbreaking.ThecvesoffiberF4alesmoothandlikethoseofplainconcreteinshape.Thatisbecausethepulloutprocessofsmoothsteelfiberisrathergentle.4AnalyticalInvestigationFourkinclsoftypicalsteelfiberconcretetensilestress-straincurvescanbeseen:inaxialtensionconditions,the1%dosageofthesteelfiberisfarshortofstrainhardeningoftheconcretematerialstothepointwheremostoftheexperimentalcurvesareinreachAfterthepeak,thereloadssagsection.However,asdermationincreases,therearetwocurveshaveaclearsecondpeakappeared,whiletheothertwodonot,itisthebasisofthisphenomenoncanbedividedintotwom句orcategoriesofstrengtheningandtougheningofsteelfiberreinforcedconcrete,thereasecondpeakforthetougheningcls,nosecondpeaktoenhancetheclass.Manytensilestress-strainmodelshavebeenbroughtforward一1、2、4、6、9、10,Mostoftheirrmatsesectional.takingthepeakloadasthedivisionalpoint.1nthispaper,theformulaoftherisingsectionandthatofthefallingsectionaredifferent.1ntheformulas:4.1FormulaofrisingsectionThedigitalmodelfortherisingsectionisxy-;where,fibers.(1)eparametersrelatedtothecharactersofmatrixandsteelTheboundaryconditionsareasllowing:1)X,Y=O;2)X=O,Itcanbedrawnfromtheboundary'.Formula(4)canbesimplified(2)AndthevalueofQIcanbecalculated企omexperimentaldataas:where,Eoistheorigintangentmodulus;Ep,secantmodulusatpeakload(thefrrstpeak)Thus,FormulaCallbeinvertedas:xy=63Fi11.67(3)4.2FormulaoffallingsectionThedigitalmodelforthefallingsectionis:且y=-α2(x-i)'+:c(4)where,(l~andþJarepametersrelatedtothecharactersofmatrixandsteelfibers.τ'hevalueofß~ischosenas1.7intheformulaoffallingsection9、10.theboundaryconditionX=1,y=1issatisfiedinherently.Inaddition.thevalueofacouldberegressedwiththemethodofleastsquaresas:(9)itcanbeseenontheexpressionthattheeffectsofthematrixsengthandfibercontentonthecue'sfallingrateareopposite.5.ComparisonofPredictionsandExperirnentalResultsThecomparisonofpredictionsandexperimentalresultsforstress-straincurvesareshowninFig.12(takethecurvesofF3--6010asanexample).Thetheoreticalcurveandtheexperimentalonesfitwel1.6.Conclusionsa)enthematrixstrengthincreases,theratiosofcrackstressesofSFRC(withthesametypeoffiber)tothoseofplainconcreteoneswiththesaii3emproportioneinvariable.Theseratiosofultirnatetensilestrengthsvarydissimilarlyaccordingtothetypeofsteelfiber.Moreover,theincrementsalebiggerthanthoseofcracksessandareinfluencedbyfibertype.b)Asthefibercontentincreases.thecrackstressandultimatetensilestrengthofSFRCirnproveobviouslyandtheeffectofthefibercontentonthecharactersoftensilestrengthofSFRCispositiveandconsistent.c)ThecrackstrainorthestrainsatpeaktensileloadOfSFRCaremuchbiggerthantheseofplainconcrete.Inaddition,theincrementsgoupasthematrixstrengthorthefibercontentmcreases.d)AtensiletoughnessmoduluswasintroducedωevaluatethetoughnesscharactersofSFRCunderuniaxialtension.ThetensiletoughnessofSFRCismuchbetterthanthatofplainconcrete.Inaddition.isinfluencedbythematrixstrengthandcharactersofsteelfiber.e)Thematrixstrengthishigher,thestress-straincurvesfalldownfaster.Otherwise,therisingofthefibercontentcanmuchirnprovethechubbinessofthesecurves.Moreover.thetypeofsteelfiberhassomeeffectontheshapeofthestress-straincurve.。Theformulaofthetensilestress-straincveofSFRCwasregressed.Thetheoreticalcurveandtheexperimentalonesfitwel1.T}1ismodelmaybehelpfulinthefurtherresearchofSFRCunderuniaxialtension.2EarthworkBecauseearthmovingmethodsandcostschangemorequicklythanthoseinanyotherbranchofcivilengineering,thisisafieldwheretherearerealopportunitiesfortheenthusiast.In1935mostofthemethodsnowinuseforcarryingandexcavatingearthwithrubber-tyredequipmentdidnotexist.Mostearthwasmovedbynarrowrailtrack,nowrelativelyrare,andthemainmethodsofexcavation,withfaceshovel,backacter,ordraglineorgrab,thoughtheyarestillwidelyusedareonlyafewofthemanycurrentmethods.Tokeephisknowledgeofearthmovingequipmentuptodateanengineermustthereforespendtinestudyingmodernmachines.Generallytheonlyreliableup-to-dateinformationonexcavators,loadersandtransportisobtainablefromthemakers.Earthworksorearthmovingmeanscuttingintogroundwhereitssurfaceistoohigh(cuts),anddumpingtheearthinotherplaceswherethesurfaceistoolow(fills).Toreduceearthworkcosts,thevolumeofthefillsshouldbeequaltothevolumeofthecutsandwhereverpossiblethecutsshouldbeplacedneartofillsofequalvolumesoastoreducetransportanddoublehandlingofthefill.Thisworkofearthworkdesignfallsontheengineerwholaysouttheroadsinceitisthelayoutoftheearthworkmorethananythingelsewhichdecidesitscheapness.Fromtheavailablemapsahdlevels,theengineeringmusttrytoreachasmanydecisionsaspossibleinthedrawingofficebydrawingcrosssectionsoftheearthwork.Onthesitewhenfurtherinformationbecomesavailablehecanmakechangesinjissectionsandlayout,butthedrawinglfficeworkwillnothavebeenlost.Itwillhavehelpedhimtoreachthebestsolutionintheshortesttime.Thecheapestwayofmovingearthistotakeitdirectlyoutofthecutanddropitasfillwiththesamemachine.Thisisnotalwayspossible,butwhenitcanbedoneitisideal,beingbothquickandcheap.Draglines,bulldozersandfaceshovelsandothis.Thelargestradiusisobtainedwiththedragline,andthelargesttonnageofearthismovedbythebulldozer,thoughonlyovershortdistances.Thedisadvantagesofthedraglinearethatitmustdigbelowitself,itcannotdigwithforceintocompactedmaterial,itcannotdigonsteepslopws,anditsdumpinganddiggingarenotaccurate.Faceshovelsarebetweenbulldozersanddraglines,havingalargerradiusofactionthanbulldozersbutlessthandraglines.Theyareanletodigintoaverticalclifffaceinawaywhichwouldbedangeroustorabulldozeroperatorandimpossibleforadragline.Eachpieceofequipmentshouldbeleveloftheirtracksandfordeepdigsincompactmaterialabackacterismostuseful,butitsdumpingradiusisconsiderablylessthanthatofthesameescavatorfittedwithafaceshovel.Rubber-tyredbowlscrapersareindispensableforfairlyleveldiggingwherethedistanceoftransportistoomuchtoradraglineorfaceshovel.Theycandigthematerialdeeply(butonlybelowthemselves)toafairlyflatsurface,carryithundredsofmetersifneedbe,thendropitandlevelitroughlyduringthedumping.Forharddiggingitisoftenfoundeconomicaltokeepapushertractor(wheeledortracked)onthediggingsite,topusheachscraperasitreturnstodig.Assoonasthescraperisfull,thepushertractorreturnstothebeginningofthedigtoheoptohelpthenestscraper.Bowlscrapersareoftenextremelypowerfulmachines;manymakersbuildscrapersof8cubicmetersstruckcapacity,whichcarry10m³heaped.Thelargestself-propelledscrapersareof19m³struckcapacity(25m³heaped)andtheyaredrivenbyatractorengineof430horse-powers.Dumpersareprobablythecommonestrubber-tyredtransportsincetheycanalsoconvenientlybeusedforcarryingconcreteorotherbuildingmaterials.Dumpershavetheearthcontaineroverthefrontaxleonlargerubber-tyredwheels,andthecontainertipsforwardsonmosttypes,thoughinarticulateddumpersthedirectionoftipcanbewidelyvaried.Thesmallestdumpershaveacapacityofabout0.5m³,andthelargeststandardtypesareofabout4.5m³.Specialtypesincludetheself-loadingdumperofupto4m³andthearticulatedtypeofabout0.5m³.Thedistinctionbetweendumpersanddumptrucksmustberemembered.dumperstipforwardsandthedriversitsbehindtheload.Dumptrucksareheavy,strengthenedtippinglorries,thedrivertravelsinfrontlftheloadandtheloadisdumpedbehindhim,sotheyaresometimescalledrear-dumptrucks.3SafetyofStr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护士工作总结自我评价
- 2026归主安顺市中共关岭自治县委员会办公室招聘公益性岗位人员2人备考题库含答案详解(达标题)
- 2026广东佛山高明区沧江中学附属小学临聘教师招聘备考题库附参考答案详解(综合题)
- 关于我区居家养老服务情况的调查报告
- 教师职称水平能力测试题库及答案
- 2026广东广州番禺中学附属学校招聘备考题库含答案详解(精练)
- 2026广东佛山市顺德区东马宁小学招聘临聘教师1人备考题库附答案详解
- 2026广东深圳大学艺术学部赵璐特聘教授团队博士后招聘1人备考题库带答案详解(模拟题)
- 2026四川西南医科大学附属医院招聘康复医学科医师岗2人备考题库及答案详解参考
- 2026上海市气功研究所工作人员招聘5人备考题库含答案详解(b卷)
- 2026年山东水利职业学院单招综合素质笔试参考题库含详细答案解析
- 建设工程消防施工质量通病及整改示例
- 混凝土行业供应链分析报告
- 2025沪科版(五四制)八年级化学主题一化学的魅力知识清单
- 市域社会治理现代化
- 湖南河湖划界合同范本
- 高标准农田建设项目验收方案
- 2025年煤制天然气行业研究报告及未来发展趋势预测
- 食堂设计投标方案(3篇)
- 初级意大利语教程课件
- DB13-T2321-2015-盐碱地高粱咸水直灌栽培技术规程-河北省
评论
0/150
提交评论