实际问题与二次函数两课时的_第1页
实际问题与二次函数两课时的_第2页
实际问题与二次函数两课时的_第3页
实际问题与二次函数两课时的_第4页
实际问题与二次函数两课时的_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数实际应用第一课时做一做1.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时?菜园的面积最大,面积是多少2.用总长为60米的篱笆围成矩形场地,矩形面积S随矩形一边长L的变化而变化,当L是多少米时,场地的面积S最大??最大利润问题

某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析:销售单价是多少时,可以获利最多?实际问题设销售价为x元(x≤13.5元),那么销售量可表示为:

件;销售额可表示为:

元;所获利润可表示为:

元;当销售单价为

元时,可以获得最大利润,最大利润是

元.

某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?调整价格包括涨价和降价两种情况

涨价:

(1)设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖_____件,实际卖出___________件,销额为_______________元,买进商品需付________________元因此,所得利润为_____________________________元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即(0≤x≤30)(0≤x≤30)所以,当定价为65元时,利润最大,最大利润为6250元解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润答:定价为元时,利润最大,最大利润为6050元(0≤x≤20)x(元)152030…y(件)252010…

若日销售量y是销售价x的一次函数。

(1)求出日销售量y(件)与销售价x(元)的函数关系式;

(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下:(2)设每件产品的销售价应定为x元,所获销售利润为w元。则

产品的销售价应定为25元,此时每日获得最大销售利润为225元。则解得:k=-1,b=40。

(1)设此一次函数解析式为。所以一次函数解析为。设旅行团人数为x人,营业额为y元,则3.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?4.某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?解:设每个房间每天增加x元,宾馆的利润为y元y=(50-x/10)(180+x)-20(50-x/10)y=-1/10x2+34x+80005.某个商店的老板,他最近进了价格为30元的书包。起初以40元每个售出,平均每个月能售出200个。后来,根据市场调查发现:这种书包的售价每上涨1元,每个月就少卖出10个。现在请你帮帮他,如何定价才使他的利润最大?6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。如何定价才能使得利润最大?若生产厂家要求每箱售价在45—55元之间。如何定价才能使得利润最大?(为了便于计算,要求每箱的价格为整数)7.有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).⑴设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?二次函数实际应用第二课时例1.某涵洞是抛物线形,它的截面如图所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析:

如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是.此时只需抛物线上的一个点就能求出抛物线的函数关系式.AB解:如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系。由题意,得点B的坐标为(0.8,-2.4),又因为点B在抛物线上,将它的坐标代入

,得所以因此,函数关系式是BA问题2一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m.这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?解一解二解三探究3

图中是抛物线形拱桥,当水面在L时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?继续解一如图所示,以抛物线的顶点为原点,以抛物线的对称轴为轴,建立平面直角坐标系。∴可设这条抛物线所表示的二次函数的解析式为:当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-3,这时有:∴当水面下降1m时,水面宽度增加了返回解二如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了∴可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)返回解三

如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:∵抛物线过点(0,0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了此时,抛物线的顶点为(2,2)∴这时水面的宽度为:返回喷泉与二次函数

一公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.

如果不计其它因素,那么水池的半径至少要多少m才能使喷出的水流不致落到池外?实际问题

根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.解:建立如图所示的坐标系,根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25)

当y=0时,可求得点C的坐标为(2.5,0);

同理,点D的坐标为(-2.5,0).

设抛物线为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25.数学化xyoA●B(1,2.25)(0,1.25)●C(2.5,0)●D(-2.5,0)1.某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?随堂练习

解:以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为:(1)因为y轴垂直平分AB,并交AB于点C,所以,又CO=0.8m,所以点B的坐标为(2,-0.8)。因为点B在抛物线上,将它的坐标代入(1),得所以a=-0.2

因此,所求函数关系式是。

活动4

练习:有一抛物线拱桥,已知水位在AB位置时,水面的宽度是m,水位上升4m就达到警戒线CD,这时水面宽是米.若洪水到来时,水位以每小时0.5m速度上升,求水过警戒线后几小时淹到拱桥顶端M处.ONMCDABxy如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?(1)卡车可以通过.提示:当x=±1时,y=3.75,3.75+2>4.(2)卡车可以通过.提示:当x=±2时,y=3,3+2>4.xy-1-3-1-31313O

例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵AB=4∴A(-2,0)B(2,0)∵OC=4.4∴C(0,4.4)设抛物线所表示的二次函数为∵抛物线过A(-2,0)∴抛物线所表示的二次函数为∴汽车能顺利经过大门.1.有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱顶部离地面2.1m。该车能通过隧道吗?请说明理由.练习2.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论