充分条件与必要条件课件_第1页
充分条件与必要条件课件_第2页
充分条件与必要条件课件_第3页
充分条件与必要条件课件_第4页
充分条件与必要条件课件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

充分条件与必要条件编辑课件常用正面表达词及它的否认.

正面词语

否定词语

等于不等于小于不小于大于不大于是不是都是不都是编辑课件用反证法证明:圆的两条不是直径的相交弦不能互相平分.:如图,在⊙O中,弦AB、CD交于P,且AB、CD不是直径.求证:弦AB、CD不被P平分.分析:假设弦AB、CD被P平分,连接OP后,可以推出AB、CD都与OP垂直,那么出现矛盾.编辑课件证明:

假设弦AB、CD被P平分,由于P点一定不是圆心O,连接OP,根据垂径定理的推论,有OP⊥AB,OP⊥CD,即过点P有两条直线与OP都垂直,这与垂线性质矛盾.所以,弦AB、CD不被P平分.编辑课件正面词语

否定词语

至多有一个至少有两个至少有一个一个也没有至多有

n个至少有n+1个任意的某个所有的某些常用正面表达词及它的否认.

编辑课件4、如果命题“假设p那么q〞为假,那么记作pq.3、假设命题“假设p那么q〞为真,记作pq(或qp).2、四种命题及相互关系:1、命题:可以判断真假的陈述句,可写成:假设p那么q.复习互逆原命题若p则q逆命题若q则p否命题若则逆否命题若则互为

为互

否逆逆否互否互否互逆编辑课件〔1〕假设,那么;〔2〕假设,那么;〔3〕全等三角形的面积相等;〔4〕对角线互相垂直的四边形是菱形;真真假假判断以下命题是真命题还是假命题:编辑课件什么是充分条件?什么是必要条件?预习问题:编辑课件新授课1、充分条件与必要条件:一般地,用、分别表示两个命题,如果命题成立,可以推出命题也成立,即,那么叫做的充分条件,叫做的必要条件.那么称:是的充分条件,是的必要条件。P足以导致q,也就是说条件p充分了;q是p成立所必须具备的前提编辑课件两三角形全等两三角形面积相等两三角形全等是两三角形面积相等的充分条件.两三角形面积相等是两三角形全等的必要条件.编辑课件例1.指出以下各组命题中,p是q的什么条件,q是p的什么条件.编辑课件练习:课本10页编辑课件2.

充分必要条件如果p是q的充分条件,p又是q的必要条件,则称p是q的充分必要条件,简称充要条件,记作.编辑课件编辑课件例2、以“充分不必要条件〞、“必要不充分条件〞、“充要条件〞与〞既不充分也不必要条件“中选出适当的一种填空.〔充分不必要条件〕〔充分不必要条件〕〔必要不充分条件〕〔必要不充分条件〕〔充要条件〕〔充要条件〕〔既不充分也不必要条件〕编辑课件

BA编辑课件

D

B编辑课件例7、假设p是r的充分不必要条件,r是q的必要条件,r又是s的充要条件,q是s的必要条件.那么:1〕s是p的什么条件?2〕r是q的什么条件?必要不充分条件充要条件编辑课件练:1.请用“充分不必要〞、“必要不充分〞、“充要〞、“既不充分也不必要〞填空:(1)“(x-2)(x-3)=0〞是“x=2〞的______条件.(2)“同位角相等〞是“两直线平行〞的___条件.(3)“x=3〞是“x2=9〞的______条件.(4)“四边形的对角线相等〞是“四边形为平行四边形〞的__________条件.必要不充分充要充分不必要既不充分也不必要编辑课件设集合充分不必要条件2、判断p是q的什么条件?必要不充分条件必要不充分条件必要不充分条件必要不充分条件必要不充分条件充分不必要条件⑴⑵⑶⑷⑸⑹⑺编辑课件2.充要条件的证明注意:分清p与q.编辑课件编辑课件编辑课件①从命题角度看引申㈠假设p那么q是真命题,那么p是q的充分条件q是p的必要条件.㈡假设p那么q是真命题,假设q那么p为假命题,那么p是q的充分不必要条件,q是p必要不充分条件.〔四〕假设p那么q,假设q那么p都是假命题,那么p是q的既不充分也不必要条件,q是p既不充分也不必要条件.(三〕假设p那么q,假设q那么p都是真命题,那么p是q的充要条件编辑课件②从集合角度看命题“假设p那么q〞引申编辑课件编辑课件练习:课本12页编辑课件课堂小结〔3〕判别技巧:①可先简化命题;②否认一个命题只要举出一个反例即可;③将命题转化为等价的逆否命题后再判断。〔1〕充分条件、必要条件、充

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论