版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小型垂直轴风力发电系统设计[摘要]本文介绍了一种小型垂直轴风力发电系统的设计方案,本系统主要面向沿海高层建筑或遥远地区用户。经过查阅大量文献资料结合必要的理论计算,系统采用四片NACA0012型叶片构成H型达里厄风力机,利用永磁直驱同步发电机将机械能转化为电能,经过电力电子电路对蓄电池进行充电。文中对主要支撑件和传动件进行了必要的结构校核,对所用的两个角接触球轴承进行了使用寿命校核。最后以垂直轴风轮和永磁直驱发电机为主要对象,用solidworks软件建立三维模型,设计风力发电系统主要零部件,并简要介绍其控制电路、选择蓄电池型号。[关键字]垂直轴风力发电机达里厄NACA0012翼型DesignoftheVerticalAxisWindTurbine[Abstract]Thisisadesignofakindofverticalaxiswindturbinewhichwasusedinremovedruralareaorhighriseinseasidecitybasedonrelatedtheories.Byconsultingreferencesourcesandnecessarymathematicaloperation,fourNACA0012air-foilbladeswereusedasthecompomentsoftheH-typeDarrieus.Thelead-acidbetterywaschargedbytheelectricalenergywhichwasgeneratedbyapermanentmagnetsynchronousmotorwiththeoperationofpowerelectroniccircuits.Inthisarticle,someconstructuressuchasthemainsuppotingpartsandtheangularcontactballbearingswerevertifiedontheintensityandlife.Byusingofthesolidworks2006software,everyimportantparthasa3Dmodel.Wealsodesignacontrolcircuitandbetterybreifly.[Keywords]VerticalaxisWindturbineDarrieusNACA0012air-foil目录第一章绪论11.1国内外风力发电的开展现状及其趋势11.2小型垂直轴风力发电机开展概况3第二章风力发电根本原理42.1风特性42.1.1风能量42.1.2湍流特性52.2风力发电系统结构框架5第三章小型垂直轴风力发电的总体设计63.1风力机的种类及选择63.2垂直轴风力机空气动力学83.2.1风能利用率93.2.2Cp-λ功率特性曲线103.2.3贝茨极限103.2.4叶尖速比113.2.5风力机的功率及扭矩计算113.3叶片选型123.3.1叶片实度133.3.2叶片形状及材料14第四章电气设备及传动设计164.1根本原理164.1.1法拉第电磁感应原理164.1.2相位角及功率因数164.2转化装置174.2.1直驱式永磁同步发电机174.2.2电气系统电路设计174.3传动系统结构设计及计算184.3.1传动轴的设计184.3.2轴承的计算及选型20第五章刹车装置及其他部件设计255.1刹车装置255.1.1刹车装置原理255.1.2刹车结构受力计算275.2塔架的设计285.2.1支撑件受力分析285.2.2拉索的受力计算305.3蓄电池和选型315.3.1蓄电池的种类及工作根本原理315.3.2蓄电池选型325.4箱体的设计325.4.1箱体的外形设计325.4.2箱体的防锈与密封33结论34致谢语35参考文献36附录37引言当前火力发电仍然是主要的发电方式,其高污染高能耗正一步步吞噬着地球脆弱的生态环境,地球急需一种环保高效的可再生能源来替代火力发电。风力发电不像火力发电那样需要大量的煤炭、水力发电那样需要建造巨大的水库,也不像核电那样需要消耗铀,它不需要燃料就可以源源不断地产生能源,建好之后除了日常的维护费用外几乎不需要其他费用支持。风力发电的用法很多,既可以并网使用也可以离网使用,可以同太阳能一起使用,也可以单独构成大型风力发电厂。风力机的种类千奇百怪,设计思路五花八门,充分发挥了人类丰富的想象力和创造力,按轴的方向分有水平轴风力机、垂直轴风力机,按驱动方式分有升力型和阻力型等等。虽然目前世界各地的大局部风场所用的风力机为水平轴的,但由于垂直轴风力机,尤其提到达里厄型风力机,有着优越的空气动力性能,提高了效率,并且很大程度降低了造价,所以近年来广泛受到各国研究人员的关注。垂直轴风力机的旋转半径可以小至一两米,也可以大到数十米,发电风速范围比拟广。第一章绪论国内外风力发电的开展现状及其趋势随着能源紧缺及化石燃料对环境污染日趋严重,开发新型能源成为各国经济开展的关键,目前可再生能源有太阳能、风能、地热能等。风能发电是目前为止技术最为成熟,历史最为悠久的发电方式,是具有大规模开展潜力的可再生能源,有可能成为重要的替代能源。自13世纪起,水平轴风车产业就成为了农村经济结构的主要局部,而利用风力发电的历史可以追溯到19世纪晚期,美国的Brush研制了第一台12kW的直流风力机。Golding(1955)、Shepherd和Divone(1994)记录了早期的风力机开展史。1931年,苏联制造了一台100KW、直径30m的Balaclava(巴拉克拉法帽)风力机;19世纪50年代早期,英国制造了一台100KW、直径24m的AndreaEnfield(安德鲁-恩菲)风力机。1956年,丹麦建造了一台200KW、直径24m的Gedser(盖瑟)风力机,1963年法国电力工业试验了一台功率1.1MW、直径35m的风力机。在德国,Hutter(胡特)于19世纪50年代和60年代建立了一些新型的风力机。由于石油价格突然上涨,美国开始建造一系列示范风力机组,如1975年的功率100KW、直径38m的Mod-0风力发电机组和1987年的功率2.5MW、直径97.5m的Mod-5B风力发电机组。目前世界上最大的风力发电机是德国制造的E-126,高达120m,风轮直径126m,每个叶片长达61.4m,每片重18t,装机功率到达5MW[1],如图1-1所示。图1-1Enercon的E-126型风力发电机我国风能资源丰富,根据第三次风能普查结果,我国技术可开发的陆地面积约为24×104km2。考虑到风电场中风力发电机组的实际布置能力,按照5MW/km2计算,陆上技术可开发量为120×104MW。目前我国风能资源开发利用的重点区域有内蒙古自治区、辽宁省、河北省、吉林省、甘肃省、新疆维吾尔自治区、江苏省等,其中内蒙古自治区技术可开发量约为50×104MW,居全国之首[2]如图1-2所示。图1-2全年平均风能密度分布在国家可再生能源开展规划和风电装备国产化等相关政策的支持下,我过风电产业得到了快速开展,[3],如图1-3所示。图1-3历年我国装机储量小型垂直轴风力发电机开展概况垂直轴风力机〔VerticalAxisWindTurbine或VAWT〕的风轮轴与风向垂直,风轮的转动与风向无关,但是由于其启动风速较高且功率不稳定,其开展并不像水平轴风力机那么迅速。随着计算科学的飞速开展,垂直轴风力机的优异空气动力性能〔尤其是达里厄风力机〕渐渐为世人所认识,近年来广泛受到各国研究人员的关注。国外较大的风力发电公司有加拿大的CleanfiledEnergy公司,其主导产品是一种kW的升力型叶轮风力发电机,整套系统由玻璃钢纤维和钢材组成,约重181.4kg,叶轮高3m,轮辐直径2.5m。2006年,中国垂直风力发电机实验基地在内蒙古化德县启动运行,目前50kW小样机组已投入运行开始发电,如图1-4所示。2007年,西峡瑞发水电设备公司和哈尔滨发电设备研究中心联合开发设计的1.5MW垂直轴永磁风力发电机研制成功,并在张家口风电场安装运行。图1-4德化县50kW垂直轴风力机第二章风力发电根本原理风特性风能量空气的流动现象称为风,风是由于不同地方的空气受热不均匀,从一个地方向另一个地方运动的空气分子产生的,风的能量就是空气分子的动能,如图2-1所示。图2-1空气流的动能风功率计算公式为联立以上各式得〔2.1〕从式〔2.1〕容易看出风速对风能的影响是最大的,因此在沿海地区设计风力机时必须要考虑强台风对设备的影响。湍流特性湍流指的是短时间内的风速波动,随着海拔、气候、地形等变化。影响湍流的因素很多,产生湍流的主要原因有:1.由地形差异引起的气流与地表的摩擦。2.由于空气密度差异和气温变化的热效应空气垂直运动。湍流往往是有这两种原因相互作用形成的。湍流无法用简单的数学公式完整的表达出来,其复杂程度超出了人类现有的认识能力。虽然它的活动遵循一定的定律,但是人类想要用这些定律来描述湍流过程是相当困难的,因此只能通过统计学来大致描述湍流。湍流风速变化根本上服从高斯函数,风速变动相对于风速均值服从正态分布,湍流强度I是用来描述湍流总体水平的,计算公式如下[4]:〔2.2〕式中I为湍流强度;为脉动风速的均方根;为脉动风速动能;为10min平均风速。湍流强度由地表的粗糙度和高度决定,通常是在很短的一段时间内计算得到的,如几分钟到一小时。风力发电系统结构框架小型垂直轴风力发电机不需要并网,只要选择适宜的蓄电池就能够提供一般家庭的生活用电,本次设计的发电系统主要由以下几局部构成:叶轮、发电机、传动机构〔包括刹车〕、塔架、整流、功率控制系统,如图2-2所示。图2-2系统结构图第三章小型垂直轴风力发电的总体设计风力机的种类及选择风力机的分类方法很多,其中按风力机主轴布置方向可分为水平轴风力机和垂直轴风力机,水平轴风力机的旋转主轴与风向平行,如图3-1所示。水平轴风力机组有两个主要优势:1.实度较低,能量本钱低;2.叶轮扫掠面的平均高度可以更高,有利于增加发电量。图3-1水平轴风力发电机垂直轴风力机的旋转主轴与风向垂直,如图3-2所示,垂直轴风力机设计简单,风轮无需对风,其优点有:1.可以接受任何风向的风,无需对风;2.齿轮箱和发电机可以安装在地面,检修维护方便。图3-2垂直轴风力发电机按照桨叶受力方式分类可分为升力型风力机和阻力型风力机。升力型风力机利用叶片的升力带动旋转轴转动,从而转化风能为电能,这种风力机目前较为常见,大局部水平轴风力机都属于升力型风力机。目前大中型风电主要采用水平轴风力机,属升力型风力机,具有转速高、风的利用率较高等优点,其叶尖速比通常在4以上,最大功率系数可达50%,如图3-3所示。阻力型风力机利用叶片上受到的阻力来驱动发电机发电,大局部阻力型风力机为垂直轴,目前较少,如图3-4所示。图3-3升力型风力发电机图3-4阻力型风力发电机垂直轴升力型风力机既有垂直轴风力机结构简单、维修方便等优点,又和升力型风力机一样具有较高转速,风能利用率有所提高。由于运行过程中受力比水平轴好得多,疲劳寿命要更长。垂直轴风力机空气动力学如图3-5所示建立平面坐标系,假定风速矢量为v,叶片端线速度矢量为u,叶片所在位置夹角为θ,那么叶片的平均线速度为[5]〔3.1〕在图3-5中,风速矢量v=〔0,-V〕,叶片速度矢量u=〔-Usinθ,Ucosθ〕,风对叶片的相对速度w=v+u,坐标运算后得w=〔-Usinθ,-V+Ucosθ〕。图3-5垂直风力机动力原理相对风速的大小就是矢量w的模|w|,以表示w的单位矢量,表示u的单位矢量,那么可以求出此时的攻角α,攻角就是相对风速与叶片弦长所在直线的夹角,按照矢量计算可推得:〔3.2〕在风力的作用下,叶片在攻角α时受到的升力和阻力可以按以下公式计算:〔3.3〕〔3.4〕将升力和阻力投影到风轮切方向:〔3.5〕〔3.6〕其中Flt为Fl在切向的分量;Fdt为Fd在切向的分量。叶片受力分解如图3-6所示[6]。图3-6垂直风力机的叶素力学模型切向力的合力产生转矩使风轮转动,叶片在位置角为θ时产生的转矩为〔3.7〕风能利用率风能利用系数Cp是表示风力机效率的重要参数,由于风通过风轮的风能不能完全转化为风轮机械能,其风能利用率Cp为[7]〔3.8〕其中Pm为风力机输出的机械功率;Pw为风力机输入的风能。目前大型水平轴风力发电机的风能利用率绝大局部是由叶片设计方计算得到的,一般在40%以上。由于之前一般都是利用叶素理论来计算垂直轴风力机的风能利用率,得出的结果不如水平轴,但是根据国外最新的实验说明垂直轴的风能利用率不低于40%[8],再加上水平轴风力机受到风向变化的影响,而垂直轴风力机可以在任何风速角下工作,因此有理由相信垂直轴风力机的利用率能够超过水平轴。Cp-λ功率特性曲线风能利用系数Cp一般是变化的,它随着风速与风轮转速变化而变化,叶片尖端线速度与风速之比叫做叶尖速比λ〔将在第节具体说明〕,为了得到最正确的风能利用率,一般根据Cp-λ曲线来选择适宜的叶尖速比,如图3-7所示。图3-7Cp-λ曲线图从图3-7中看出,当叶尖速比到达7.5左右时风能利用系数最大,风能利用率最高,Cp值有一个最大值,实际风力机一般都达不到这么高的风能利用率,所以我们先初定叶尖速比在λ=6时对风力机进行设计,具体的Cp-λ图还需根据具体的风力机叶片试验及攻角调整来确定。贝茨极限风能利用系数缩短能到达的最大值就是贝茨极限,德国空气动力学家AlbertBetz提出贝茨极限后,直到今天还没有人能设计出超过这个极限的风力机,该极限不是由于设计缺乏造成的,而是因为流管不得不在致动盘上游膨胀,使得自由流速比在圆盘处小,贝茨极限由一下微分方程得出[9]:〔3.9〕式中a为气流诱导因子。解微分方程可知当a=1/3时,Cp最大,求得最大。叶尖速比风轮叶片尖端线速度与风速之比称为叶尖速比,阻力型风力机叶尖速比一般为0.3至0.6,升力型风力机叶尖速比一般为3至8。在升力型风力机中,叶尖速比直接反映了相对风速与叶片运动方向的夹角,即直接关系到叶片的攻角,是分析风力机性能的重要参数。叶尖速比计算公式为〔3.10〕风力机的功率及扭矩计算由福建省情资料库中的图像资料可以看出厦门地区地面平均风速在4m/s~6m/s左右,如图3-8所示。图3-8福建省风速分布从福建气象网站〔〕24小时监测的结果可以看出,厦门地区一天内4级风〔约8m/s〕出现的频率最高,如图3-9所示。图3-9厦门某日24小时风速监测图风力机的额定风速按照国家标准《GBT13981-2023小型风力机设计通用要求》:风轮扫掠面积小于等于40m2的风力机额定风速Vn在6m/s~10m/s,我们将风力机的风速暂定为8m/s。风力机设计发电功率为300W,现在我们来计算通过该风力机的总功率,按风力机效率Cp=40%,那么风力机的输入功率为〔3.11〕根据公式〔2.1〕得扫风面积为〔3.12〕式中P为风力机实际获得总功率,W;ρ为空气密度,kg/m3;取标准值1.25kg/m3;S为风轮的扫风面积,m2;v为上游风速,m/s。以上结果说明:通过风功率为750W的风力机组,扫掠面积为m2,在风速为8m/s的情况下发电功率为300W。风轮高度与直径的比值为风轮的高径比,应该在输出相同功率时叶片制造费用最低的条件下,选择高径比,研究说明,高径比为1附近时相同的材料扫风面积最大,其中H为风轮高度,D为风轮直径。由得到H=1.5m,D=1.6m,产生的扫掠面积根本上能符合要求。风力机转矩[10]:〔3.13〕叶片选型叶片是利用气流通过时产生的压力差使叶轮转动的部件,具有空气动力学特性,其设计质量对整个风力发电系统及其他零部件有这直接影响,因此叶片是风力机的重要部件。叶片的设计目标主要有:1.良好的空气动力外形;2.可靠地结构强度;3.合理的叶片刚度;4.良好的结构动力学特性和启动稳定性;5.耐腐蚀、方便维修;6.满足以上目标前提下,尽可能减轻叶片重量,降低本钱。风力机的翼型多种多样,各有各的优缺点,应用较多的有NACA翼型系列、SERI翼型系列、NREL翼型系列、RISΦ翼型系列和FFA-W翼型系列等,其中NACA翼型是美国国家宇航局〔NASA〕的前身国家航空咨询委员会〔NACA〕提出设计的翼型系列,具有低阻力系数的特点,适合低速运行[11]。3.3.1叶片实度风力机叶片的总面积与风通过风轮的面积〔风轮扫掠面积〕之比称为实度比〔容积比〕,是风力机的一个参考数据。垂直轴风力机的叶片实度计算公式为:〔3.12〕升力型垂直轴风力机叶轮,C为叶片弦长,N为叶片个数,R为风轮半径,L为叶片长度,σ为实度比。合理选取实度比的原那么是在保证风轮气动特性的条件下,力求使制造叶片的费用最低。为了最大限度提高动效率,翼型特性应具有以下要求:1.升力系数斜度大;2.阻力系数小;3.阻力系数与零升角对称。如图3-10所示三种翼型的阻力系数,可以看出,NACA0012的阻力系数较小,适用于大雷诺数的情况,具有上述特性,应选用较低阻力系数NACA0012对称翼型。图3-10几种翼型的翼型特性由于NACA0012是对称翼型,在图3-11左侧数据表中仅列出了单边的数据,表中c是弦长〔弦长为1.00〕;x是弦长坐标〔单位是x/c〕;y是对应x位置的翼面与弦的距离〔单位是y/c〕。图3-11NACA0012翼型参数实度比选择在0.5~0.6范围内较好。为此可以得出风轮叶片的弦长:〔3.13〕本次设计采用的叶片弦长0.24m,数据只需将表中各数字适当缩放即可[5]。叶片形状及材料叶片截面结构为主梁蒙皮式,外表材料为铝合金,主梁采用单向承载能力强的硬铝材料,O型主梁结构制造简单,各向受力均衡。叶片空心处用聚氨酯泡沫材料填充,剖面形式如图3-12所示。图3-12叶片剖面主梁可直接焊接与铝合金蒙皮上,待主梁与蒙皮连接完成后,在空腹结构内填入聚氨酯直接发泡填充成型。由此,风力机的根本参数可以确定,如表所示。表3.1风力机参数额定风速平均效率叶尖速比设计功率8m/s40%6300W第四章电气设备及传动设计根本原理法拉第电磁感应原理磁通量的变化将产生感应电动势,闭合电路的一局部导线切割磁感线将产生感应电流,这种现象叫做电磁感应,1820年H.C.奥斯特发现电流磁效应,之后许多科学家试图解释这一现象,1831年8月,法拉第认为感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。法拉第电磁感应定律可用以下公式表示:〕其中:e为感应电动势,N为线圈匝数,为磁通量变化量。导线切割磁感线产生的感应电动势可用以下公式表示:〔4.2〕其中B为磁感应强度,L为导线长度,v为导线切割速度。相位角及功率因数瞬时电压及瞬时电流由以下公式得到:〔4.3〕〔4.4〕其中Um为电压最大值,Im为电流最大值,φ是瞬时电压与瞬时电流的夹角。瞬时功率为:〔4.5〕在一个周期内对瞬时功率积分获得平均功率:〔4.6〕对于三相电流,每相电流等于的线圈电流,实际产生的功率为:〔4.7〕式中即为功率因数。转化装置4.2.1直驱式永磁同步发电机永磁同步发电机适合离网型风力发电系统采用,由于发电机转子直接由风轮驱动,因此不需要安装升速齿轮箱,这样防止了齿轮箱产生的损耗、噪声以及材料的磨损等问题。目前普遍使用的永磁同步发电机主要有FD系列和YF系列,按照功率和转速选择发电机,经过查阅《中国电器工程大典第九卷-电机工程》,现选择发电机型号为FD-300,其根本参数如表所示。型号额定功率/W发电机额定电压/V重量/kg启动力矩/Nm额定电流/A发电机额定转速FD-3003002817400r/min电气系统电路设计由于本人对电力控制方面不是很了解,因此只能对现有前人的论文进行一些改动[12]。功率控制局部设计限于知识水平本人无法所有完成,只能大概表达根本工作原理,如图4-1所示。图4-1系统电力控制图永磁直驱同步发电机转子输出三相交流电经过不控整流电路整流后对蓄电池进行充电,电子调压电路的功能除了对蓄电池充电的控制外,还负责多余电能的卸荷。12V蓄电池接boost电路进行升压,升压后电压为24V,整个系统对外供电电压也为24V。光电编码器的额定电压是5V,因此在电路中参加R1与R2进行分压限流。传动系统结构设计及计算传动轴的设计主传动轴只承受扭矩,不受弯矩,按空心主轴扭转强度估算主轴最小直径:〔4.8〕其中A为系数,按《机械设计手册单行本-轴承及其连接表5-1-19》选取;d为轴端直径,mm;n为轴的工作转速,r/min;P为轴传递的功率,kW;为空心轴的内径d1与外径d的比值,α=d1/d。查阅《机械设计手册单行本-轴承及其连接表5-1-19》得45钢的A值取110,功率为750W,主轴额定转速n为400转/min。代入式(4.8)后得到〔4.9〕按照主轴扭转刚度计算直径:〔4.10〕其中B为系数,按《机械设计手册单行本-轴承及其连接表5-1-20》选取,查阅《机械设计手册单行-本轴承及其连接表5-1-20》得一般传动时B值取91.5,功率为kW,主轴额定转速n为400转/min,代入式(4.10)后得到〔4.11〕如果截面上有键槽时,应将求得的轴径增大,其增大值见《机械设计手册单行本轴-承及其连接》表5-1-22,增大值应选7%,最后得出的最小外径d=mm。为了平安,我们选择的轴外径为d=30mm,内径d1=18mm,采用45钢调质处理,主轴如图4-2所示。图4-2主轴示意图校核主轴平安系数,主轴转矩为〔4.12〕只考虑扭拒作用时的平安系数为〔4.13〕其中为对称循环应力下的材料扭转疲劳极限,Mpa,见《机械设计手册单行本轴-承及其连接表5-1-1》,;为扭转时的有效应力集中系数,见《机械设计手册单行本轴-承及其连接表5-1-30~表5-1-32》,;为外表质量系数,一般用《机械设计手册单行本轴-承及其连接表5-1-36》;轴外表强化处理后用《机械设计手册单行本轴-承及其连接表5-1-38》;有腐蚀情况时用《机械设计手册单行本轴-承及其连接表5-1-35》或《机械设计手册单行本轴-承及其连接表5-1-37》,;为扭转时的尺寸影响系数,见《机械设计手册单行本轴-承及其连接表5-1-34》,;、为扭转应力的应力幅和平均应力,Mpa见《机械设计手册单行本轴-承及其连接表5-1-25》,;为材料扭转的平均盈利折算系数,见《机械设计手册单行本轴-承及其连接表5-1-33》,。将各数据代入公式后得根据调质45钢,要求查《机械设计手册》〔机工版〕第2版第19篇第5章得平安系数为5.0,因此设计的主轴满足要求。轴承的计算及选型由于风力机不仅承受风轮的扭矩,而且要承受气流方向的一定弯矩,角接触球轴承不仅能够承径向力,同时能够承受一定的径向载荷,因此在主轴上安装两个角接触球轴承。1.角接触球轴承1的选用计算角接触球轴承1的安装位置如图4-3所示。角接触球轴承角接触球轴承图4-3轴承1的安装位置轴径d=30mm,额定转矩T=Nm。由《机械设计手册单行本-轴承表6-2-82》选择角接触球轴承36000型新代号7000C,之所以选用接触球轴承是考虑到主轴在转动时有可能产生径向载荷,轴承1参数如表4.2所示。孔径d外径D轴承代号极限转速r/min〔脂润滑〕额定动负荷额定静负荷重量30mm55mm7006C9500表4.2轴承1参数轴向载荷:径向载荷按照最不利状况计算,根据伯努利方程,气流作用在叶片上的压力为:〔4.14〕作用在4个叶片上的总力为〔4.15〕由《机械设计手册单行本-轴承表6-2-12》推荐使用寿命为100000小时,轴承担量动载荷的计算公式为〔4.16〕式中X、Y分别为径向动载荷系数及轴向动载荷系数。可通过查《机械设计手册表28·3-2》得:因为所以应该选择X=0.44,Y=1.47,代入式子得到轴承根本额定动载荷按如下公式计算:式中:为根本额定动载荷计算值,N;为速度因数,按《机械设计手册单行本-轴承表6-2-9》选取;为力矩载荷因数,力矩载荷较小时取1.5,较大时取2,这里选取2;为冲击载荷因数,按《机械设计手册单行本-轴承表6-2-10》选取;为温度因数,按《机械设计手册单行本-轴承表6-2-11》选取1;为寿命因数,按《机械设计手册单行本-轴承表6-2-8》选取;为当量动载荷。将各个数据代入式〔4.13〕得:应选用此轴承能够满足额定载荷的要求。2.角接触球轴承2的选用计算角接触球轴承2的安装位置如图4-4所示。轴承轴承图4-4轴承2安装位置按照《机械设计手册单行本-轴承表6-2-82》选择轴承型号36105〔新型号7005C〕,参数如表4.3所示。孔径d外径D轴承代号极限转速r/min〔脂润滑〕额定动负荷额定静负荷重量25mm47mm7006C12000表4.3轴承2参数按照轴承1校核公式〔4.15〕对轴承进行校核:轴承担量动载荷按公式〔4.16〕得:式中X、Y分别为径向动载荷系数及轴向动载荷系数。可通过查《机械设计手册表28·3-2》得:因为0,代入公式〔4.16〕得到由《机械设计根底〔第五版〕公式16-3》计算轴承寿命:〔4.17〕式中:为温度因数,按《机械设计手册单行本-轴承表6-2-11》选取1;为冲击载荷因数,按《机械设计手册单行本-轴承表6-2-10》选取1.2;C为额定动载荷,C=9.38kN;N为主轴额定转速,n=400r/min;为寿命指数,对于球轴承取3。将各数据代入式子后得由《机械设计手册单行本-轴承表6-2-12》推荐使用寿命为100000小时,所以可以满足使用要求。主轴与发电机之间用圆锥销套筒联轴器进行连接,如图4-5所示,联轴器具体参数见图纸。图4-5圆锥销套筒联轴器第五章刹车装置及其他部件设计刹车装置刹车装置原理目前应用的制动器有外抱块式制动器(简称:块式制动器)、内张蹄式制动器(简称:蹄式制动器)、带式制动器、盘式制动器、载荷自制制动器等等,它们的工作原理都是利用摩擦力使致动盘停止,从而起到制动作用。制动器目前已经形成标准,是标准件。东莞市产华电机FDB-1-100型凸缘单板式电磁制动器是利用电磁力产生压力作用于制动盘上,在制动盘外表形成摩擦力,其根本结构如图5-1所示。图5-1制动器受力要求在十二级风速〔约30m/s〕时能够有效制动,下面通过计算力矩来选择制动器由公式〔4.12〕得制动器所选型号为FDB-1-100,其根本参数如表所示。表5.1制动器参数型号制动盘直径/mm静摩擦转矩N/m动摩擦转矩/N·m功率[24VDC](W)at20℃重量kgFDB-1-100160908035制动器的闭合是通过转载主轴上面的一个光电编码器来实现控制的,光电编码器收集主轴转速数据,主控电路中的单片机对数据进行计算,当转速到达某值时,单片机输出数字信号,控制继电器常开触点闭合,从而制动器电磁铁得电,制动器的电磁铁由蓄电池供电,如图5-2所示。图5-2制动器示意图制动器外形尺寸如(/mm)。表5.2制动器外形数据AC1C2C3DEHJKLMPYmabt1601901758030652664423882-M80.3(-1)7刹车结构受力计算用制动器的额定制动转矩反求风力机制动器的最大工作风速,由公式〔4.12〕得这个风速相当于13级风,制动器在13级风下可以平安制动。为了保护有效发电机和其他部件,制动器必须在转速超出发电机允许范围时立即动作,完成转速数据收集的任务就交给了光电编码器,光电编码器通过光电转换收集转轴转速数据,再将数据送往主控电路〔一般为单片机〕进行分析,最后产生一个控制信号使执行件动作。图5-3为套轴式编码器,轴孔直接与电机轴配合,通过螺钉锁紧,当电机轴转动时带动光电编码器转子转动并产生光电信号。5-3光电编码器套轴式编码器IHA8030内孔30mm光电编码器的参数如所示。表5.3IHA8030光电编码器数据电源电压DC+5±5%最大机械转矩4000rpm输出电压高电平≥85%Vcc,低电平≤抗震力50m/s2,10~200HZ,xyz方向各2h续上表消耗电流≤180mA抗冲击980m/s2,6ms,xyz方向各2次响应频率0~100KHZ防护防水、防油、防尘IP54输出波形方波工作寿命MTBF≥50000h〔+25℃载空比±工作温度-10℃~启动力矩5×10-2Nm储存温度-30℃~转动惯量4×10-5kgm2工作湿度30~85%〔无结霜〕轴最大负荷径向40N,轴向30N重量用光电编码器对制动器进行控制不仅控制精度高,而且灵活性较大,用户可以通过简单的修改数据就可以对制动器的触发转速进行修改,这一特点对于不同地方不同环境下的制动非常有利。5.2塔架的设计支撑件受力分析支架选用低合金碳钢,在满足强度要求的同时尽量减少重量,现选择牌号40Cr结构用无缝钢管,壁厚2mm,外径30mm,长度1448mm,我们考虑最坏情况,即气流直接作用于静止的叶片上,这样将四个叶片等效于一个平板,平板的面积为四个叶片投影面面积之和,如图5-4所示。等效平板面积S风速v等效平板面积S风速v图5-4等效受力图根据流体力学伯努利方程,作用于平板上的正压力为:作用于平板的合力为四个叶片所受到的力最后传递到中间支撑杆,支撑杆为40Cr合金钢空心结构,重量轻,强度高,如图5-5所示。中间支撑杆中间支撑杆图5-5中间支撑杆图5-6支撑杆受力简图杆受弯矩为钢管截面模量为〔5.1〕其中D为外径,m;α=26/30=0.87为内径与外径比。受到最大弯应力〔5.2〕查《机械设计手册单行本-常用工程材料表3-1-9》得40Cr合金钢的许用应力为,所以能够满足强度要求。拉索的受力计算塔架的稳定方式有很多,有拉杆式、拉索式、桁架式等,而拉索式凭借其简单的结构、低廉的价格及安装简易等特点被广泛应用于各种塔架的固定。塔架用三条拉索固定与地面,每根拉索在水平面投影的夹角为120°,与塔架夹角为60°,拉索布置如图5-7所示。图5-7拉索的布置按最不利原那么,风速方向与y轴平行,受力如图5-8所示。图5-8单根拉索受力分析由图5-8可得到下式:查《机械设计手册》起重机局部可得如表5.4所示。表5.4拉索力学性能钢丝绳公称直径d/mm材料近似质量钢丝公称抗拉强度/MPa钢丝绳最小破断拉力/KN2钢芯钢丝绳/100m1470钢丝绳数据目前市场上能够买得到的钢绳成品有许多,南通力森钢丝绳生产的6×7类钢丝绳直径为2mm钢丝绳可以满足我们设计需求,在地面准确位置固定地脚螺栓钢筋,钢筋端部弯成环状与钢丝绳套环连接。5.3蓄电池和选型5.3.1蓄电池的种类及工作根本原理电化学电池是一种把氧化复原反响所释放出来的能量直接转变成低电压直流电能的装置,蓄电池分为酸性电池和碱性电池两大类,酸性电池也称铅酸电池,其电解质为硫酸,负极为Pb,正极为PbO2。铅酸蓄电池广泛应用于各个行业,电池价格廉价,为镉镍蓄电池的1/6;高倍率放电性能良好,可用于引擎启动,多用于汽车发动机的启动;电池电压在使用蓄电池中最高,可到达2.2V且易于浮充使用,没有“记忆〞效应。鉴于以上优点,本次设计我们采用铅酸蓄电池来作为储能原件[13]。5.3.2蓄电池选型沈阳松下蓄电池生产的LC-P12100ST型蓄电池满足我们的设计要求,根本参数如表。表5.5蓄电池参数松下蓄电池100AH电池类型阀控密闭铅酸蓄电池使用产品UPS容量100AH电压12V其他特征407×173×210mm5.4箱体的设计箱体主要用于安装发电机等重要部件,使这些部件免受风雨的侵蚀,要求能够防锈密封。箱体要有一定的重量才能防止让整个系统重心比拟低,起到稳定的作用。5.4.1箱体的外形设计本系统的箱体主要以圆柱形为主,上部小,下部偏大,呈阶梯状,如图5-9所示。导轨地脚螺栓箱体导轨地脚螺栓箱体图5-9箱体外形箱体一侧开一矩形门,方便蓄电池的安装与检修,箱底内部两个导轨起到导向作用,能够让蓄电池在装入和取出时不偏移。为了防止箱体被大风倾覆,在箱体底部用6个地脚螺栓与地面固定。箱体的防锈与密封防锈:箱体材料为铸铁,在户外工作环境中难免会受到水和空气的锈蚀,锈蚀后的箱体不仅密封性降低,而且强度也受到影响,因此,必须对箱体进行防锈处理。防锈处理的最简单方法是在箱壁上喷涂防锈漆。防锈漆有油性的和水性的两种,油性防锈漆在材料外表形成油性物质,去除难,现在一般很少采用,水性防锈漆使用方便、价格低廉,但是具有一定毒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论