站在巨人的肩膀上_第1页
站在巨人的肩膀上_第2页
站在巨人的肩膀上_第3页
站在巨人的肩膀上_第4页
站在巨人的肩膀上_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站在巨人的肩膀上——探索数学史对中学生的数学学习的影响数学史是一部光辉的奋斗史,是一部浓缩着人类勇攀科学高峰的不朽影片。《普通高中数学课程标准(实验)》、《全日制义务教育数学课程标准(实验稿)》均指出通过数学史的学习使学生“体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。”其中,高中阶段还专门设立10个专题的数学史选修。我经过学习和研究数学史(从一个中学生的角度出发),探索数学史对中学生的数学学习的一些积极的影响:一、学习数学史上的三大危机有利于培养学生学习数学的兴趣和敢于挑战权威的精神在初中阶段,我们学习了无理数,老师对我们讲起了第一次数学危机:无理数的发现高中阶段,我们将学习极限与微积分、集合等相关知识。它们都曾经引起数学的危机。通过对三大危机的学习,使我对数学有了更深的认识,它激发了我学习数学的浓厚兴趣,并树立起敢于挑战传统、挑战权威。1、第一次数学危机:无理数的发现大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。2、 第二次数学危机:无穷小是不是零?1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。3、 第三次数学危机:集合的悖论1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。人们认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。罗素悖论使整个数学大厦动摇了。承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。二、学习数学史上的八大猜想有利于培养学生的合情推理、勇攀数学高峰的精神江山代有人才出,各领风骚数百年。数学的每次进步,除了三大危机之外,还有各种猜想,最为著名的是下面的八大猜想,其中还有一些猜想等着人们继续攻克。通过学习八大猜想,有利于培养学生的合情推理能力和勇攀数学高峰的精神。1、费马猜想:又称费马大定理或费马问题,是数论中最著名的世界难题之一。1637年,法国数学家费马在巴歇校订的希腊数学家丢番图的《算术》第II卷第8命题旁边写道:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”费马去世后,人们找不到这个猜想的证明,由此激发起许多数学家的兴趣。欧拉、勒让德、高斯、阿贝尔、狄利克雷、柯西等大数学家都试证过,但谁也没有得到普遍的证法。300多年以来,无数优秀学者为证明这个猜想,付出了巨大精力,同时亦产生出不少重要的数学概念及分支。若用不定方程来表示费马大定理即:当整数n>2时,方程xn+yn=zn没有正整数解。剑桥大学怀尔斯终于1995年正式彻底解决这一大难题。2、 哥德巴赫猜想:世界近代三大数学难题之一。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的想法:任何一个>=6之偶数,都可以表示成两个奇质数之和。任何一个>=9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想。至今仍没有能证明,最接近成功是陈景润的证明。3、 黎曼猜想:由数学家波恩哈德•黎曼(1826—1866)于1859年提出。它是数学中一个重要而又著名的未解决的问题。多年来它吸引了许多出色的数学家为之绞尽脑汁。黎曼猜想(RH)是关于黎曼Z函数Z(s)的零点分布的猜想。黎曼Z函数在任何复数s工1上有定义。它在负偶数上也有零点(i.e.当s=?2,s=?4,s=?6,...)。这些零点是“平凡零点”。黎曼猜想关心的是非平凡零点。黎曼猜想提出:黎曼Z函数非平凡零点的实数部份是%即所有的非平凡零点都应该位于直线%+ti(“临界线”)上。t为一实数,而i为虚数的基本单位。沿临界线的黎曼Z函数有时通过Z-函数进行研究。它的实零点对应于Z函数在临界线上的零点。素数在自然数中的分布问题在纯粹数学和应用数学上都很重要。素数在自然数中的分布并没有简单的规律。黎曼(1826--1866)发现素数出现的频率与黎曼Z函数紧密相关。黎曼猜想所以被认为是当代数学中一个重要的问题,主要是因为很多深入和重要的数学和物理结果都能在它成立的大前提下被证明。大部份数学家也相信黎曼猜想是正确的(约翰•恩瑟•李特尔伍德与塞尔伯格曾提出怀駆塞尔伯格于晚年部分改变了他的怀疑立场。在1989年的一篇论文中,他猜测黎曼猜想对更广泛的一类函数也应当成立。)克雷数学研究所设立了$1,000,000美元的奖金给予第一个得出正确证明的人。4、 庞加莱猜想:任一单连通的、封闭的三维流形与三维球面同胚。上述简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对“庞加莱猜想”的证明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间产生影响。5、蜂窝猜想:四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为"蜂窝猜想"。6、四色猜想:1852年弗南西斯.格思里发现了一种有趣的现象:每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。872年,四色猜想成了世界数学界关注的问题。1878〜1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。7、 叙拉古猜想:大家一起来做这样一个游戏:每个人可以从任何一个正整数开始,连续进行如下运算,若是奇数,就把这个数乘以3再加1;若是偶数,就把这个数除以2。这样演算下去,直到第一次得到1才算结束,首先得到1的获胜。比如,要是从1开始,就可以得至I」1-4-2-1;要是从17开始,贝I」可以得到17-52-26-13-40-20-10-5-16-8-4-2-1。自然地,有人可能会问:是不是每一或角谷猜想。8、 孪生素生猜想:1849年,波林那克提出孪生素数猜想:存在无穷多对孪生素数。孪生素数即相差2的一对素数。例如3和5,5和7,11和13,„,10016957和10016959等等都是孪生素数。孪生素数是有限个还是有无穷多个?这是一个至今都未解决的数学难题.早在20世纪初,德国数学家兰道就推测孪生素数有无穷多.许多迹象也越来越支持这个猜想.最先想到的方法是使用欧拉在证明素数有无穷多个所采取的方法.设所有的素数的到数和为:S=1/2+1/3+1/5+1/7+1/11+...如果素数是有限个,那么这个倒数和自然是有限数.但是欧拉证明了这个和是发散的,即是无穷大.由此说明素数有无穷多个.1919年,挪威数学家布隆仿照欧拉的方法,求所有孪生素数的倒数和:B=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+...如果也能证明这个和比任何数都大,就证明了孪生素数有无穷多个了.这个想法很好,可是事实违背了布隆的意愿.他证明了这个倒数和是一个有限数,现在这个常数就被称为布隆常数:B=1.90216054...布隆还发现,对于任何一个给定的整数m,都可以找到m个相邻素数,其中没有一个孪生素数.1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数P,使p+2是不超过两个素数之积。三、学习数学史上的中外数学家秩事,有利于学生树立正确的人生观和价值观中外数学家的轶事不胜枚举,每个人成功的背后一样是流着辛勤的汗水。通过了解中外一些著名的数学家轶事,知道了有些出身贫寒的数学家通过自己不断的艰苦努力,最终在数学上起的辉煌的成绩,这些史实启迪了学生的思维,培养学生良好的思维品质,有助于学生树立正确的人生观和价值观。下面,我就中外著名数学家的轶事各举一例:1、“我们的希望是在21世纪看见中国成为数学大国。”——陈省身2004年12月3日,国际数学大师、中科院外籍院士陈省身,在天津病逝。享年93岁。陈省身,1911年10月26日生于浙江嘉兴。少年时就喜爱数学,觉得数学既有趣又较容易,并且喜欢独立思考,自主发展,常常“自己主动去看书,不是老师指定什么参考书才去看”。陈省身1927年进入南开大学数学系,该系的姜立夫教授对陈省身影响很大。在南开大学学习期间,他还为姜立夫当助教。1930年毕业于南开大学,1931年考入清华大学研究院,成为中国国内最早的数学研究生之一。在孙光远博士指导下,发表了第—篇研究论文,内容是关于射影微分几何的。1932年4月应邀来华讲学的汉堡大学教授布拉希克对陈省身影响也不小,使他确定了以微分几何为以后的研究方向。1934年,他毕业于清华大学研究院,同年,得到汉堡大学的奖学金,赴布拉希克所在的汉堡大学数学系留学。在布拉希克研究室他完成了博士论文,研究的是嘉当方法在微分几何中的应用。1936年获得博土学位。从汉堡大学毕业之后,他来到巴黎。1936年至1937年间在法国几何学大师E.嘉当那里从事研究。E.嘉当每两个星期约陈省身去他家里谈一次,每次一小时。“听君一席话,胜读十年书。”大师面对面的指导,使陈省身学到了老师的数学语言及思维方式,终身受益。陈省身数十年后回忆这段紧张而愉快的时光时说,“年轻人做学问应该去找这方面最好的人”。陈省身先后担任我国西南联大教授,美国普林斯顿高等研究所研究员,芝加哥大学、伯克利加州大学终身教授等,是美国国家数学研究所、南开大学数学研究所的创始所长。陈省身的数学工作范围极广,包括微分几何、拓扑学、微分方程、代数、几何、李群和几何学等多方面。他是创立现代微分几何学的大师。早在40年代,他结合微分几何与拓扑学的方法,完成了黎曼流形的高斯—博内一般形式和埃尔米特流形的示性类论。他首次应用纤维丛概念于微分几何的研究,引进了后来通称的陈氏示性类。为大范围微分几何提供了不可缺少的工具。他引近的一些概念、方法和工具,已远远超过微分几何与拓扑学的范围,成为整个现代数学中的重要组成部分。陈省身还是一位杰出的教育家,他培养了大批优秀的博士生。2、达朗贝尔(JeanLeRondd'Alembert,1717-1783) 法国著名的数学家达朗贝尔一生研究了大量课题,完成了涉及多个科学领域的论文和专著,其中最著名的有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言等等。他的很多研究成果记载于《宇宙体系的几个要点研究》中。达朗贝尔生前为人类的进步与文明做出了巨大的贡献,也得到了许多荣誉。但在他临终时,却因教会的阻挠没有举行任何形式的葬礼。达朗贝尔是一个军官的私生子,母亲是一位著名的沙龙女主人。达朗贝尔出生后,他的母亲为了不影响自己的名誉,把刚出生的儿子遗弃在教堂的石阶上,后被一名士兵捡到。达朗贝尔的亲生父亲得知这一消息后,把他找回来寄养给了一对工匠夫妇。达朗贝尔少年时被父亲送到了一所教会学校,在那里他学习了很多数理知识,为他将来的科学研究打下了坚实的基础。难能可贵的是,在宗教学校里受到了许多神学思想的熏陶以后,达朗贝尔仍然坚信真理、一生探求科学的真谛、不盲从于宗教的认识论。后来他自学了一些科学家的著作,并且完成了一些学术论文。1741年,凭借自己的努力,达朗贝尔进入了法国科学院担任天文学助理院士,在以后的两年里,他对力学作了大量研究,并发表了多篇论文和多部著作。1746年,达朗贝尔被提升为数学副院士。1750年以后,他停止了自己的科学研究,投身到了具有里程碑性质的法国启蒙运动中去。他参与了百科全书的编辑和出版,是法国百科全书派的主要首领。在百科全书的序言中,达朗贝尔表达了自己坚持唯物主义观点、正确分析科学问题的思想。在这一段时间之内,达朗贝尔还在心理学、哲学、音乐、法学和宗教文学等方面都发表了一些作品。1760年以后,达朗贝尔继续进行他的科学研究。随着研究成果的不断涌现,达朗贝尔的声誉也不断提高。他尤其以写论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论