湖南省桃江县一中2024届高三数学第一学期期末达标测试试题含解析_第1页
湖南省桃江县一中2024届高三数学第一学期期末达标测试试题含解析_第2页
湖南省桃江县一中2024届高三数学第一学期期末达标测试试题含解析_第3页
湖南省桃江县一中2024届高三数学第一学期期末达标测试试题含解析_第4页
湖南省桃江县一中2024届高三数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省桃江县一中2024届高三数学第一学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为()A. B. C. D.2.已知函数的一条切线为,则的最小值为()A. B. C. D.3.函数的定义域为,集合,则()A. B. C. D.4.设函数,则使得成立的的取值范围是().A. B.C. D.5.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.6.已知向量,,若,则()A. B. C. D.7.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1 B.2 C.3 D.48.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为9.函数的定义域为()A.或 B.或C. D.10.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A. B.C. D.11.设等差数列的前n项和为,若,则()A. B. C.7 D.212.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是().金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A.中国代表团的奥运奖牌总数一直保持上升趋势B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C.第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D.统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5二、填空题:本题共4小题,每小题5分,共20分。13.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.14.已知函数,则曲线在处的切线斜率为________.15.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.16.锐角中,角,,所对的边分别为,,,若,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.18.(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.19.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.20.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.21.(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点,求点的极径.22.(10分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.2、A【解析】

求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.3、A【解析】

根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.4、B【解析】

由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.5、C【解析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.6、A【解析】

利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,,,,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.7、C【解析】

逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.【详解】①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.②由题意知.因为当时,,又,所以在上恒成立,所以函数在上为单调递减函数,正确.③由题意知,当时,,此时在上为增函数,不合题意,故.令,解得.因为在上不单调,所以在上有解,需,解得,正确.④令,得.根据函数的单调性,在上的最大值只可能为或.因为,,所以最大值为64,结论错误.故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.8、C【解析】

根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.9、A【解析】

根据偶次根式被开方数非负可得出关于的不等式,即可解得函数的定义域.【详解】由题意可得,解得或.因此,函数的定义域为或.故选:A.【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题.10、D【解析】

由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,∴,即,∴,∴数列是以为公比的等比数列,而,所以,∴当时,,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.11、B【解析】

根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题.12、B【解析】

根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D.统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.14、【解析】

求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.15、-1【解析】

由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.16、【解析】

由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为(0,1),单调递增区间为(1,+∞)(2)(3,2e]【解析】

(1)当a=2时,求出,求解,即可得出结论;(2)函数在上有两个零点等价于a=2x在上有两解,构造函数,,利用导数,可分析求得实数a的取值范围.【详解】(1)当a=2时,定义域为,则,令,解得x1,或x1(舍去),所以当时,单调递减;当时,单调递增;故函数的单调递减区间为,单调递增区间为,(2)设,函数g(x)在上有两个零点等价于在上有两解令,,则,令,,显然,在区间上单调递增,又,所以当时,有,即,当时,有,即,所以在区间上单调递减,在区间上单调递增,时,取得极小值,也是最小值,即,由方程在上有两解及,可得实数a的取值范围是.【点睛】本题考查了利用导数研究函数的单调性极值与最值、等价转化思想以及数形结合思想,考查逻辑推理、数学计算能力,属于中档题.18、(1)的极坐标方程为,普通方程为;(2)【解析】

(1)根据三角函数恒等变换可得,,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围;【详解】(1),,即曲线的普通方程为,依题意得曲线的普通方程为,令,得曲线的极坐标方程为;(2)法一:将代入曲线的极坐标方程得,则,,,异号,,,;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,则,,,异号,,.【点睛】本题考查参数方程与普通方程,极坐标方程与平面直角坐标方程之间的转化,求解几何量的取值范围,关键在于明确极坐标系中极径和极角的几何含义,直线的参数方程,参数的几何意义,属于中档题.19、(1)(2)①2②期望值为X900600300100P【解析】

(1)一件手工艺品质量为B级的概率为.(2)①由题意可得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,,即,由得,所以当时,,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件.②由上可得一件手工艺品质量为A级的概率为,一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论