专题2.6 阿氏圆 (隐圆压轴三)(解析版)_第1页
专题2.6 阿氏圆 (隐圆压轴三)(解析版)_第2页
专题2.6 阿氏圆 (隐圆压轴三)(解析版)_第3页
专题2.6 阿氏圆 (隐圆压轴三)(解析版)_第4页
专题2.6 阿氏圆 (隐圆压轴三)(解析版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题2.6阿氏圆阿氏圆问题问题:求解“”类加权线段和最小值方法:①定:定系数,并确定是半径和哪条线段的比值②造:根据线段比,构造母子型相似③算:根据母子型结论,计算定点位置④转:“”转化为“”问题关键:①可解性:半径长与圆心到加权线段中定点距离比等于加权系数②系数小于1:内部构造母子型③系数大于1:外部构造母子型【典例1】阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【解答】解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.【变式1-1】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=9,⊙B的半径为3,点P是⊙B上一点,连接AP,CP,则AP+CP的最小值为.【答案】【解答】解:连接BP,在BC上截取BQ=1,连接PQ,AQ,∴,,∴,∵∠PBQ=∠CBP,∴△BPQ∽△BCP,∴,∴PQ=CP,∴AP+CP=AP+PQ≥AQ,当A、P、Q三点依次在同一直线上时,AP+CP=AQ=的值最小,故答案为:.【变式1-2】如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+BP的最小值为()A. B.6 C.2 D.4【答案】A【解答】解:如图1,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.要使AP+BP最小,只要AP+PD最小,当点A,P,D在同一条直线时,AP+PD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故选:A.【变式1-3】如图,在正方形ABCD中.AB=8,点P是正方形ABCD内部的一点,且满足BP=4,则PD+PC的最小值是()A.6 B.8 C.10 D.12【答案】C【解答】解:在BC边上取一点E,使BE=2,连接DE,如图∵ABCD是正方形,AB=8∴AB=BC=CD=8,∠BCD=90°∵BP=4∴,∴且∠PBC=∠PBC∴△PBE∽△BCP∴∴PE=PC∴PD+PC=PD+PE在Rt△DCE中,CD=8,CE=BC﹣BE=6∴DE==10∵PD+PE≥DE∴PD+PE≥10∴PD+PC的最小值是10故选:C.【变式1-4】如图,已知抛物线y=﹣x2+x+3与x轴交于A,B两点(A在点B的左侧),与y轴交于点C,⊙O与x轴交于点E(2,0),点P是⊙O上一点,连接CP,BP,求BP+CP的最小值.【解答】解:如图,在OC上取一点T,使得OT=,连接PT,BT,OP.由题意C(0,3),E(2,0),A(﹣1,0),B(4,0)∴OE=2,OC=3,OB=4,OA=1,∴OP2=OT•OB,∴=,∵∠POT=∠COP,∴△POT∽△COP,∴===,∴PT=PC,∴PB+PC=BP+PT≥BT,在Rt△BOT中,OB=4,OT=,∴BT===,∴ABP+PC≥,∴BP+PC的最小值为.【变式1-5】(西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值等于()A.4 B. C. D.【答案】C【解答】解:在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴=,∵AP=2,AQ=1,∴=,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=PB,∴=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QB==,∴的最小值,故选:C.【变式1-6】(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+PB的最小值为.【答案】见试题解答内容【解答】解:如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴PA+PB=PA+PF,∵PA+PF≥AF,AF===,∴PA+PB≥,∴PA+PB的最小值为,故答案为.【变式1-7】(龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则PA+PB的最小值为.【答案】.【解答】解:在AC上截取CQ=1,连接CP,PQ,BQ,∵AC=9,CP=3,∴=,∵CP=3,CQ=1,∴=,∴△ACP∽△PCQ,∴PQ=AP,∴PA+PB=PQ+PB≥BQ,∴当B、Q、P三点共线时,PA+PB的值最小,在Rt△BCQ中,BC=4,CQ=1,∴QB=,∴PA+PB的最小值,故答案为:.【变式1-8】如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为△ABC内一动点,且满足CD=2,则AD+BD的最小值为.【答案】.【解答】解:如图,在CB上取一点T,使得CT=,连接DT,AT.∵CD=2,CT=,CB=3,∴CD2=CT•CB,∴=,∵∠DCT=∠BCD,∴△DCT∽△BCD,∴==,∴DT=BD,∴AD+BD=AD+DT≥AT,在Rt△ACT中,AC=4,CT=,∴AT===,∴AD+BD≥,∴AD+BD的最小值为.【变式1-9】如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+PC的最小值为5.【答案】5.【解答】解:如图,在BC上取一点T,使得BT=1,连接PB,PT,DT.∵四边形ABCD是正方形,∴∠DCT=90°,∵CD=4,CT=3,∴DT===5,∵PB=2,BT=1,BC=4,∴PB2=BT•BC,∴=,∵∠PBT=∠PBC,∴△PBT∽△CBP,∴==,∴PT=PC,∵PD+PC=PD+PT≥DT=5,∴PD+PC的最小值为5,故答案为:5.【典例2】如图,在扇形AOB中,∠AOB=90°,OA=4,C,D分别为OA,OB的中点,点P是上一点,则2PC+PD的最小值为.【答案】2.版权所有【解答】解:如图,延长OA使AE=OA,连接ED,EP,OP,∵AO=OB=4,C,D分别是OA,OB的中点,∴OE=8,OP=4,OD=OC=2,∴==,且∠COP=∠EOP,∴△OPE∽△OCP,∴==,∴EP=2DC,∴2PC+PD=PE+PD,∴当点E,点P,点D三点共线时,2PC+PD的值最小,∴2PC+PD最小值==2.【变式2-1】如图,在扇形COD中,∠COD=90°,OC=3,点A是OC中点,OB=2,点P是为CD上一点,则PB+2PA的最小值为.【答案】【解答】连接OP,延长OC至点E,使得OE=6,则=,,∴,∵∠AOP=∠AOP,∴△AOP∽△POE,∴,即2PA=PE,∴PB+2PA=PB+PE,∴当E、P、B三点共线时,PB+PE最小,∴PB+2PA的最小值为BE==.故答案为:.【变式2-2】(梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为.【答案】.【解答】解:如图,在y轴上取点H(0,9),连接BH,∵点A(0,1),点B(2,0),点H(0,9),∴AO=1,OB=2,OH=9,∵,∠AOP=∠POH,∴△AOP∽△POH,∴,∴HP=3AP,∴3PA+PB=PH+PB,∴当点P在BH上时,3PA+PB有最小值为HB的长,∴BH===,故答案为:.【变式2-3】(溧阳市一模)如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.【答案】4.【解答】解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴=,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴==,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT===4,∴CM+2DM≥4,∴CM+2DM的最小值为4,∴答案为4.【变式2-4】如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.【答案】2【解答】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论