版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江哈尔滨师范大学附中2024年高三上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.2.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.3.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.4.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过5.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.6.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.7.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直8.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.9.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A. B. C. D.10.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知i是虚数单位,则1+iiA.-12+32i12.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③ B.①② C.①③ D.②③二、填空题:本题共4小题,每小题5分,共20分。13.在直角三角形中,为直角,,点在线段上,且,若,则的正切值为_____.14.在矩形ABCD中,,,点E,F分别为BC,CD边上动点,且满足,则的最大值为________.15.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.16.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.18.(12分)在极坐标系中,已知曲线,.(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离.19.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,,求的值.20.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.21.(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.22.(10分)已知数列是各项均为正数的等比数列,,且,,成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,为数列的前项和,记,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.2、A【解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.3、B【解析】
运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.4、D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【点睛】本题考查条形图,考查基本分析求解能力,属基础题.5、B【解析】
设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.【点睛】本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.6、D【解析】
因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.7、C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系8、C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.9、A【解析】
可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,,,当时,,则当时,,单减,当时,,单增;当时,,,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题10、B【解析】
或,从而明确充分性与必要性.【详解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分条件故选【点睛】本题考查充分性与必要性,简单三角方程的解法,属于基础题.11、D【解析】
利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。12、B【解析】
由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所.则直线与直线的斜率乘积为.所以①正确.将代入抛物线的方程可得,,从而,,根据抛物线的对称性可知,,两点关于轴对称,所以直线轴.所以②正确.如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以③不正确.故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
在直角三角形中设,,,利用两角差的正切公式求解.【详解】设,,则,故.故答案为:3【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.14、【解析】
利用平面直角坐标系,设出点E,F的坐标,由可得,利用数量积运算求得,再利用线性规划的知识求出的最大值.【详解】建立平面直角坐标系,如图(1)所示:设,,,即,又,令,其中,画出图形,如图(2)所示:当直线经过点时,取得最大值.故答案为:【点睛】本题考查了向量数量积的坐标运算、简单的线性规划问题,解题的关键是建立恰当的坐标系,属于基础题.15、【解析】
设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即,因为,所以,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.16、【解析】
由分段函数可得不满足题意;时,,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和.【详解】解:由函数,可得的增区间为,,时,,,时,,当关于的不等式的解集为,,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点.综上可得的所有值的和为1.故答案为:1.【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)见解析【解析】
(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.【详解】(1)由条件可知直线的斜率存在,则可设直线的方程为,则,由,有,所以,由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,故所求直线方程为或.(也可联立直线与椭圆方程,由验证)(2)设,则,直线的方程为.由得,由,解得,,当时,,故直线恒过定点.【点睛】此题考查的是直线与椭圆的位置关系中的过定点问题,计算过程较复杂,属于难题.18、(1)表示一条直线,是圆心为,半径为的圆;(2).【解析】
(1)直接利用极坐标方程与直角坐标方程之间的转换关系可将曲线的方程化为直角坐标方程,进而可判断出曲线的形状,在曲线的方程两边同时乘以得,由可将曲线的方程化为直角坐标方程,由此可判断出曲线的形状;(2)由直线过圆的圆心,可得出为圆的一条直径,进而可得出.【详解】(1),则曲线的普通方程为,曲线表示一条直线;由,得,则曲线的直角坐标方程为,即.所以,曲线是圆心为,半径为的圆;(2)由(1)知,点在直线上,直线过圆的圆心.因此,是圆的直径,.【点睛】本题考查曲线的极坐标方程与直角坐标方程之间的转化,同时也考查了直线截圆所得弦长的计算,考查计算能力,属于基础题.19、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,,从而,则.【点睛】本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年临时艺人雇佣合同
- 家庭亲子跳绳比赛方案
- 移动应用推广印刷品实施方案
- 2024年国际货物买卖租赁合同
- 2024年城市绿化建设合同标的及服务细节
- 2024#高新技术企业股权转让协议
- 2024年国际原油买卖合同(OPEC)
- 餐饮行业应急物资配送方案
- 2024年出版合同作者权益保护与稿酬支付
- 2024年国贸实务:磋商过程及合同条款深度解读
- 河南省信阳市2024-2025学年七年级上学期期中历史试题(含答案)
- 2024至2030年高分子吸水树脂项目投资价值分析报告
- 期中测试卷(1-5单元)(试题)-2024-2025学年三年级上册数学人教版
- 中国航空协会:2024低空经济场景白皮书
- DB11T 731-2010 室外照明干扰光限制规范
- 2024年学校食堂管理工作计划(六篇)
- 学校食堂消毒记录
- 塔吊使用安全协议书
- 民办非企业单位理事会制度
- 地 理气温的变化和分布课时1课件-2024-2025学年七年级地理上册(人教版2024)
- 临床输血的护理课件
评论
0/150
提交评论