广东省韶关市新丰一中2024年数学高三上期末监测模拟试题含解析_第1页
广东省韶关市新丰一中2024年数学高三上期末监测模拟试题含解析_第2页
广东省韶关市新丰一中2024年数学高三上期末监测模拟试题含解析_第3页
广东省韶关市新丰一中2024年数学高三上期末监测模拟试题含解析_第4页
广东省韶关市新丰一中2024年数学高三上期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省韶关市新丰一中2024年数学高三上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A. B. C. D.2.已知函数是定义在上的奇函数,函数满足,且时,,则()A.2 B. C.1 D.3.设等比数列的前项和为,则“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要4.已知向量,,若,则()A. B. C.-8 D.85.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米6.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有7.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.8.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816

6572

0802

6314

0702

4369

9728

0198

3204

9234

4935

8200

3623

4869

6938

7481

A.08 B.07 C.02 D.019.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或 B.2或 C.或 D.或10.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有()A.120种 B.240种 C.480种 D.600种11.若向量,,则与共线的向量可以是()A. B. C. D.12.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线(a>0,b>0)的一条渐近线方程为,则该双曲线的离心率为_______.14.已知数列满足,则________.15.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.16.若,且,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.18.(12分)设函数.(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围.19.(12分)已知函数的最小正周期是,且当时,取得最大值.(1)求的解析式;(2)作出在上的图象(要列表).20.(12分)已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.21.(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.22.(10分)已知正实数满足.(1)求的最小值.(2)证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.2、D【解析】

说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值.【详解】由知函数的周期为4,又是奇函数,,又,∴,∴.故选:D.【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础.3、A【解析】

首先根据等比数列分别求出满足,的基本量,根据基本量的范围即可确定答案.【详解】为等比数列,若成立,有,因为恒成立,故可以推出且,若成立,当时,有,当时,有,因为恒成立,所以有,故可以推出,,所以“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了等比数列基本量的求解,充分必要条件的集合关系,属于基础题.4、B【解析】

先求出向量,的坐标,然后由可求出参数的值.【详解】由向量,,则,,又,则,解得.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.5、D【解析】

根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.6、C【解析】

根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.7、D【解析】

先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.8、D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.9、A【解析】

根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得:,得双曲线的一条渐近线的方程为∴焦点在x、y轴上两种情况讨论:

①当焦点在x轴上时有:②当焦点在y轴上时有:∴求得双曲线的离心率2或.

故选:A.【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.10、B【解析】

首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.11、B【解析】

先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.【详解】故选B【点睛】本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.12、C【解析】

先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意,由双曲线的渐近线方程可得,即a=2b,进而由双曲线的几何性质可得cb,由双曲线的离心率公式计算可得答案.【详解】根据题意,双曲线的渐近线方程为y=±x,又由该双曲线的一条渐近线方程为x﹣2y=0,即yx,则有,即a=2b,则cb,则该双曲线的离心率e;故答案为:.【点睛】本题考查双曲线的几何性质,关键是分析a、b之间的关系,属于基础题.14、【解析】

项和转化可得,讨论是否满足,分段表示即得解【详解】当时,由已知,可得,∵,①故,②由①-②得,∴.显然当时不满足上式,∴故答案为:【点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.15、10【解析】

作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.16、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)为增区间;为减区间.见解析(2)见解析【解析】

(1)先求得的定义域,然后利用导数求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,通过证明,证得成立.【详解】(1)∵函数的定义域为,由,解得为增区间;由解得为减区间.下面证明函数只有一个零点:∵,所以函数在区间内有零点,∵,函数在区间上没有零点,故函数只有一个零点.(2)证明:函数,则当时,,不符合题意;当时,令,则,所以在上单调增函数,而,又∵区间上不单调,所以存在,使得在上有一个零点,即,所以,且,即两边取自然对数,得即,要证,即证,先证明:,令,则∴在上单调递增,即,∴①在①中令,∴令∴,即即,∴.【点睛】本小题主要考查利用导数研究函数的单调区间和零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.18、(1);(2).【解析】

(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【详解】(1)当时,可化为,由,解得;由,解得;由,解得.综上所述:所以原不等式的解集为.(2),,,,有解,,即,又,,实数的取值范围是.【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.19、(1);(2)见解析.【解析】

(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【详解】(1)因为函数的最小正周期是,所以.又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.20、(1)(2)存在,【解析】

由数列为“数列”可得,,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,,,两式相减得,,据此可得,当时,,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得,在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以.(2)由题意得,故,两式相减得所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论