高考数学一轮复习 第十三章 推理与证明、算法与复数 第1讲 合情推理与演绎推理练习 理 试题_第1页
高考数学一轮复习 第十三章 推理与证明、算法与复数 第1讲 合情推理与演绎推理练习 理 试题_第2页
高考数学一轮复习 第十三章 推理与证明、算法与复数 第1讲 合情推理与演绎推理练习 理 试题_第3页
高考数学一轮复习 第十三章 推理与证明、算法与复数 第1讲 合情推理与演绎推理练习 理 试题_第4页
高考数学一轮复习 第十三章 推理与证明、算法与复数 第1讲 合情推理与演绎推理练习 理 试题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十三章推理与证明、算法与复数第1讲合情推理与演绎推理练习理新人教A版基础巩固题组(建议用时:35分钟)一、选择题1.(2016·西安八校联考)观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第()A.22项 B.23项 C.24项 D.25项解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.答案C2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.答案C3.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x) B.-f(x) C.g(x) D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案D4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28 B.76 C.123 D.199解析观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.答案C5.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“eq\f(ac,bc)=eq\f(a,b)”类比得到“eq\f(a·c,b·c)=eq\f(a,b)”.以上式子中,类比得到的结论正确的个数是()A.1 B.2 C.3 D.4解析①②正确;③④⑤⑥错误.答案B二、填空题6.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.解析进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……,则前n组两种圈的总数是f(n)=2+3+4+…+(n+1)=eq\f(n(n+3),2),易知f(14)=119,f(15)=135,故n=14.答案147.(2016·东北三省三校联考)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第n个等式为________.解析观察所给等式左右两边的构成易得第n个等式为13+23+…+n3=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(n(n+1),2)))eq\s\up12(2)=eq\f(n2(n+1)2,4).答案13+23+…+n3=eq\f(n2(n+1)2,4)8.已知x∈(0,+∞),观察下列各式:x+eq\f(1,x)≥2,x+eq\f(4,x2)=eq\f(x,2)+eq\f(x,2)+eq\f(4,x2)≥3,x+eq\f(27,x3)=eq\f(x,3)+eq\f(x,3)+eq\f(x,3)+eq\f(27,x3)≥4,…,类比得x+eq\f(a,xn)≥n+1(n∈N*),则a=________.解析第一个式子是n=1的情况,此时a=11=1;第二个式子是n=2的情况,此时a=22=4;第三个式子是n=3的情况,此时a=33=27,归纳可知a=nn.答案nn三、解答题9.给出下面的数表序列:表1表2表311313544812…其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).解表4为13574812122032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.10.f(x)=eq\f(1,3x+\r(3)),先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=eq\f(1,30+\r(3))+eq\f(1,31+\r(3))=eq\f(1,1+\r(3))+eq\f(1,\r(3)(1+\r(3)))=eq\f(\r(3),\r(3)(1+\r(3)))+eq\f(1,\r(3)(1+\r(3)))=eq\f(\r(3),3),同理可得f(-1)+f(2)=eq\f(\r(3),3),f(-2)+f(3)=eq\f(\r(3),3).由此猜想f(x)+f(1-x)=eq\f(\r(3),3).证明f(x)+f(1-x)=eq\f(1,3x+\r(3))+eq\f(1,31-x+\r(3))=eq\f(1,3x+\r(3))+eq\f(3x,3+\r(3)·3x)=eq\f(1,3x+\r(3))+eq\f(3x,\r(3)(\r(3)+3x))=eq\f(\r(3)+3x,\r(3)(\r(3)+3x))=eq\f(\r(3),3).能力提升题组(建议用时:20分钟)11.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()A.n+1 B.2n C.eq\f(n2+n+2,2) D.n2+n+1解析1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n条直线最多可将平面分成1+(1+2+3+…+n)=1+eq\f(n(n+1),2)=eq\f(n2+n+2,2)个区域,选C.答案C12.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.1378解析观察三角形数:1,3,6,10,…,记该数列为{an},则a1=1,a2=a1+2,a3=a2+3,…an=an-1+n.∴a1+a2+…+an=(a1+a2+…+an-1)+(1+2+3+…+n)⇒an=1+2+3+…+n=eq\f(n(n+1),2),观察正方形数:1,4,9,16,…,记该数列为{bn},则bn=n2.把四个选项的数字,分别代入上述两个通项公式,可知使得n都为正整数的只有1225.答案C13.(2016·安溪三校联考)已知点A(x1,ax1),B(x2,ax2)是函数y=ax(a>1)的图象上任意不同两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论eq\f(ax1+ax2,2)>aeq\s\up6(\f(x1+x2,2))成立.运用类比思想方法可知,若点A(x1,sinx1),B(x2,sinx2)是函数y=sinx(x∈(0,π))的图象上任意不同两点,则类似地有________成立.解析对于函数y=ax(a>1)的图象上任意不同两点A,B,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论eq\f(ax1+ax2,2)>aeq\s\up6(\f(x1+x2,2))成立;对于函数y=sinx(x∈(0,π))的图象上任意不同的两点A(x1,sinx1),B(x2,sinx2),线段AB总是位于A,B两点之间函数图象的下方,类比可知应有eq\f(sinx1+sinx2,2)<sineq\f(x1+x2,2)成立.答案eq\f(sinx1+sinx2,2)<sineq\f(x1+x2,2)14.在Rt△ABC中,AB⊥AC,AD⊥BC于D,求证:eq\f(1,AD2)=eq\f(1,AB2)+eq\f(1,AC2),那么在四面体ABCD中,类比上述结论,你能得到怎样的猜想,并说明理由.证明如图所示,由射影定理,得AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴eq\f(1,AD2)=eq\f(1,BD·DC)=eq\f(BC2,BD·BC·DC·BC)=eq\f(BC2,AB2·AC2).又BC2=AB2+AC2,∴eq\f(1,AD2)=eq\f(AB2+AC2,AB2·AC2)=eq\f(1,AB2)+eq\f(1,AC2).猜想,在四面体ABCD中,AB,AC,AD两两垂直,AE⊥平面BCD,则eq\f(1,AE2)=eq\f(1,AB2)+eq\f(1,AC2)+eq\f(1,AD2).证明:如图,连接BE并延长交CD于F,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论