2024届吉林省前郭尔罗斯蒙古族自治县数学九上期末质量跟踪监视模拟试题含解析_第1页
2024届吉林省前郭尔罗斯蒙古族自治县数学九上期末质量跟踪监视模拟试题含解析_第2页
2024届吉林省前郭尔罗斯蒙古族自治县数学九上期末质量跟踪监视模拟试题含解析_第3页
2024届吉林省前郭尔罗斯蒙古族自治县数学九上期末质量跟踪监视模拟试题含解析_第4页
2024届吉林省前郭尔罗斯蒙古族自治县数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省前郭尔罗斯蒙古族自治县数学九上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.把函数的图象,经过怎样的平移变换以后,可以得到函数的图象()A.向左平移个单位,再向下平移个单位B.向左平移个单位,再向上平移个单位C.向右平移个单位,再向上平移个单位D.向右平移个单位,再向下平移个单位2.一元二次方程的解是()A. B. C. D.3.抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1) B.(﹣1,1) C.(1,3) D.(﹣1,3)4.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C. D.5.如图,在平面直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相切 C.相交 D.以上三种情况都有可能6.如图,,则下列比例式错误的是()A. B. C. D.7.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=()A.2 B.3 C.4 D.58.已知,如图,E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点)的坐标()A.(-2,1) B.(2,-1) C.(2,-1)或(-2,-1) D.(-2,1)或(2,-1)9.已知点(﹣3,a),(3,b),(5,c)均在反比例函数y=的图象上,则有()A.a>b>c B.c>b>a C.c>a>b D.b>c>a10.下图中,不是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为,则可列方程为____.12.一个长方体木箱沿坡度坡面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=m,则木箱端点E距地面AC的高度EF为_____m.13.计算:=_________.14.二次函数的图象如图所示,给出下列说法:①;②方程的根为,;③;④当时,随值的增大而增大;⑤当时,.其中,正确的说法有________(请写出所有正确说法的序号).15.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.16.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.17.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.18.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.三、解答题(共66分)19.(10分)如图,等腰中,,点是边上一点,在上取点,使(1)求证:;(2)若,求的长.20.(6分)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求B、D两点的坐标;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.21.(6分)如图,反比例函数()的图象与一次函数的图象交于,两点.(1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出的取值范围.22.(8分)解方程:(1)x2-4x+1=0

(2)x2+3x-4=023.(8分)不透明的袋中有四个小球,分别标有数字1、2、3、4,它们除了数字外都相同。第一次从中摸出一个小球,记录数字后放回袋中,第二次摇匀后再随机摸出一个小球.(1)求第一次摸出的小球所标数字是偶数的概率;(2)求两次摸出的小球所标数字相同的概率.24.(8分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.求、之间的路程;请判断此出租车是否超过了城南大道每小时千米的限制速度?25.(10分)请完成下面的几何探究过程:(1)观察填空如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为____________;②当BE=____________时,四边形CDBE为正方形.(2)探究证明如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.26.(10分)如图,为了测得旗杆AB的高度,小明在D处用高为1m的测角仪CD,测得旗杆顶点A的仰角为45°,再向旗杆方向前进10m,又测得旗杆顶点A的仰角为60°,求旗杆AB的高度.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线的顶点坐标是,抛物线线的顶点坐标是,所以将顶点向右平移个单位,再向上平移个单位得到顶点,即将函数的图象向右平移个单位,再向上平移个单位得到函数的图象.故选:C.【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.2、D【分析】这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.【详解】移项得,x2=4开方得,x=±2,故选D.【点睛】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.3、A【解析】分析:把函数解析式整理成顶点式形式,然后写出顶点坐标即可.详解:∵y=x2-2x+2=(x-1)2+1,∴顶点坐标为(1,1).故选A.点睛:本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.4、C【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.5、B【详解】解:如图,在中,令x=0,则y=-;令y=0,则x=,∴A(0,-),B(,0).∴OA=OB=.∴△AOB是等腰直角三角形.∴AB=2,过点O作OD⊥AB,则OD=BD=AB=×2=1.又∵⊙O的半径为1,∴圆心到直线的距离等于半径.∴直线y=x-2与⊙O相切.故选B.6、A【分析】由题意根据平行线分线段成比例定理写出相应的比例式,即可得出答案.【详解】解:∵DE∥BC,∴,,,∴A错误;故选:A.【点睛】本题考查平行线分线段成比例定理,熟练平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案.7、B【解析】分析:根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=1即可.详解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=1.故选B.点睛:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.8、D【分析】由E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,根据位似图形的性质,即可求得点E的对应点的坐标.【详解】解:∵E(-4,2),以O为位似中心,按比例尺1:2把△EFO缩小,∴点E的对应点的坐标为:(-2,1)或(2,-1).故选D.【点睛】本题考查位似变换;坐标与图形性质,利用数形结合思想解题是关键.9、D【分析】根据反比例函数系数k2+1大于0,得出函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,据此进行解答.【详解】解:∵反比例函数系数k2+1大于0,∴函数的图象位于第一、三象限内,在各个象限内y随x的增大而减小,∵﹣3<0,0<3<5,∴点(﹣3,a)位于第三象限内,点(3,b),(5,c)位于第一象限内,∴b>c>a.故选:D.【点睛】本题主要考查反比例函数的图象和性质,解答本题的关键是确定反比例函数的系数大于0,并熟练掌握反比例函数的性质,此题难度一般.10、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、是中心对称图形,故此选项不合题意;

B、是中心对称图形,故此选项不合题意;

C、是中心对称图形,故此选项不合题意;

D、不是中心对称图形,故此选项符合题意;

故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.二、填空题(每小题3分,共24分)11、【分析】根据题意,找出题目中的等量关系,列出一元二次方程即可.【详解】解:根据题意,设旅游产业投资的年平均增长率为,则;故答案为:.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是熟练掌握增长率问题的等量关系,正确列出一元二次方程.12、1【分析】连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.【详解】解:连接AE,

在Rt△ABE中,AB=1m,BE=m,则AE==2m,又∵tan∠EAB==,∴∠EAB=10°,

在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,

∴EF=AE×sin∠EAF=2×=1m,答:木箱端点E距地面AC的高度为1m.

故答案为:1.【点睛】本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.13、7【分析】本题先化简绝对值、算术平方根以及零次幂,最后再进行加减运算即可.【详解】解:=6-3+1+3=7【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.14、①②④【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),∴方程x2+bx+c=0的根为x1=-1,x2=3,②正确;∵当x=1时,y<0,∴a+b+c<0,③错误;由图象可知,当x>1时,y随x值的增大而增大,④正确;当y>0时,x<-1或x>3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.15、【分析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.16、1.【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=1°,故答案为:1.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键.17、【解析】设AB=a,AD=b,则ab=32,构建方程组求出a、b值即可解决问题.【详解】设AB=a,AD=b,则ab=32,由∽可得:,∴,∴,∴,,设PA交BD于O,在中,,∴,∴,故答案为.【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.18、(4,6)或(4,0)【解析】试题分析:由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的纵坐标可能的情况试题解析:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3-3=0,∴B点的坐标为(4,0)或(4,6).考点:点的坐标.三、解答题(共66分)19、(1)见解析;(2).【分析】(1)利用三角形外角定理证得∠EDC=∠DAB,再根据两角相等即可证明△ABD∽△DCE;(2)作高AF,利用三角函数求得,继而求得,再根据△ABD∽△DCE,利用对应边成比例即可求得答案.【详解】(1)∵△ABC是等腰三角形,且∠BAC=120°,

∴∠ABD=∠ACB=30°,

∴∠ABD=∠ADE=30°,

∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,

∴∠EDC=∠DAB,

∴△ABD∽△DCE;(2)过作于,∵△ABC是等腰三角形,且∠BAC=120°,,∴∠ABD=∠ACB=30°,,则,,,,,,所以.【点睛】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、解直角三角形,证得△ABD∽△DCE是解题的关键.20、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)【分析】(1)将A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系数法即可求得抛物线的解析式,再配方即可得到顶点D的坐标,根据y=0,可得点B的坐标;(2)根据BC的解析式和抛物线的解析式,设P(x,x2﹣2x﹣3),则M(x,x﹣3),表示PM的长,根据二次函数的最值可得:当x=时,PM的最大值,此时P(,﹣),进而确定F的位置:在x轴的负半轴了取一点K,使∠OCK=30°,过F作FN⊥CK于N,当N、F、H三点共线时,如图2,FH+FN最小,即PH+HF+CF的值最小,根据含30°角的直角三角形的性质,即可得结论;(3)先根据旋转确定Q的位置,与点A重合,根据菱形的判定画图,分4种情况讨论:分别以DQ为边和对角线进行讨论,根据菱形的边长相等和平移的性质,可得点S的坐标.【详解】(1)把A(﹣1,0),点C(0,﹣3)代入抛物线y=x2+bx+c,得:,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D(1,﹣4),当y=0时,x2﹣2x﹣3=0,解得:x=3或﹣1,∴B(3,0);(2)∵B(3,0),C(0,﹣3),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=x﹣3,设P(x,x2﹣2x﹣3),则M(x,x﹣3),∴PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+,当x=时,PM有最大值,此时P(,﹣),在x轴的负半轴了取一点K,使∠OCK=30°,过F作FN⊥CK于N,∴FN=CF,当N、F、H三点共线时,如图1,FH+FN最小,即PH+HF+CF的值最小,∵Rt△OCK中,∠OCK=30°,OC=3,∴OK=,∵OH=,∴KH=+,∵Rt△KNH中,∠KHN=30°,∴KN=KH=,∴NH=KN=,∴PH+HF+CF的最小值=PH+NH==;(3)Rt△OFH中,∠OHF=30°,OH=,∴OF=OF'=,由旋转得:∠FOF'=60°∴∠QOF'=30°,∴在Rt△QF'O中,QF'=OF'÷=÷=,OQ=2QF'=2×=1,∴Q与A重合,即Q(﹣1,0)分4种情况:①如图2,以QD为边时,由菱形和抛物线的对称性可得S(3,0);②如图3,以QD为边时,由勾股定理得:AD=,∵四边形DQSR是菱形,∴QS=AD=2,QS∥DR,∴S(﹣1,﹣2);③如图4,同理可得:S(﹣1,2);④如图5,作AD的中垂线,交对称轴于R,可得菱形QSDR,∵A(﹣1,0),D(1,﹣4),∴AD的中点N的坐标为(0,﹣2),且AD=2,∴DN=,cos∠ADR=,∴DR=,∴QS=DR=,∴S(﹣1,﹣);综上,S的坐标为(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣).【点睛】本题主要考查二次函数和几何图形的综合,添加合适的辅助线构造含30°角的直角三角形,利用菱形的判定定理,进行分类讨论,是解题的关键.21、(1),;(2)或【分析】(1)将点A的坐标代入中求出k的值,即可得出反比例函数的表达式;再将点B的坐标代入反比例函数中求得m的值,得出点B的坐标,用待定系数法便可求出一次函数的解析式.(2)根据函数图象可直接解答.【详解】(1)∵在()的图象上,∴,∴,∴反比例函数的表达式为.∵在的图象上,∴,∴,∴.∵点、在的图象上,∴解得∴一次函数的表达式为.(2)根据图象即可得出的取值范围:或.【点睛】本题考查了一次函数及反比例函数的交点问题,能够正确看图象是解题的关键.22、(1)x1=+2,x2=-+2(2)x1=-4,x2=1【分析】(1)运用配方法解一元二次方程;(2)运用因式分解法解一元二次方程.【详解】(1)解得:,.(2)解得:,.【点睛】选择合适的方法解一元二次方程是解题的关键.23、(1)(数字是偶数);(2)(数字相同)【分析】(1)利用概率公式求概率即可;(2)先列表,然后根据概率公式计算概率即可.【详解】解:(1)第一次摸出的小球共有4种等可能的结果,其中摸出的小球所标数字是偶数的结果有2种,∴(数字是偶数)=2÷4(2)列表如下:第二次第一次123411,12,13,14,121,22,23,24,231,32,33,34,341,42,43,44,4由表格可知:共有16种等可能的结果,其中两次摸出的小球所标数字相同的可能有4种∴(数字相同)=4÷16【点睛】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键.24、(米);此车超过了每小时千米的限制速度.【分析】(1)利用三角函数在两个直角三角形中分别计算出BO、AO的长,即可算出AB的长;(2)利用路

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论