中考数学二轮培优复习《几何模型》专题08 相似三角形中的基本模型(学生版)_第1页
中考数学二轮培优复习《几何模型》专题08 相似三角形中的基本模型(学生版)_第2页
中考数学二轮培优复习《几何模型》专题08 相似三角形中的基本模型(学生版)_第3页
中考数学二轮培优复习《几何模型》专题08 相似三角形中的基本模型(学生版)_第4页
中考数学二轮培优复习《几何模型》专题08 相似三角形中的基本模型(学生版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题08相似三角形中的基本模型【专题说明】相似三角形本章节内容在初中数学中是一个重点,也是历年中考必考的一个知识点。复习时我们首先要掌握本章节内容的重难点。【模型】一、“8”字型及其变形模型展示:(1)如图1,AB∥CD⇔△AOB∽△COD⇔eq\f(AB,CD)=eq\f(OA,OC)=eq\f(OB,OD).(2)如图2,∠A=∠D⇔△AOB∽△DOC⇔eq\f(AB,CD)=eq\f(OA,OD)=eq\f(OB,OC).图1图2[1、如图,在矩形ABCD中,点E为AD的中点,BD和CE相交于点F.如果DF=2,那么线段BF的长度为____.2、已知:如图,AD·AB=AF·AC,求证:△DEB∽△FEC.【模型】二、“A”字型及其变形模型展示:(1)如图1,DE∥BC⇔△ADE∽△ABC⇔eq\f(AD,AB)=eq\f(AE,AC)=eq\f(DE,BC).(2)如图2,∠AED=∠B⇔△ADE∽△ACB⇔eq\f(AD,AC)=eq\f(AE,AB)=eq\f(DE,BC).(3)共边共角模型,如图3,∠ACD=∠B⇔△ADC∽△ACB⇔eq\f(AD,AC)=eq\f(AC,AB)=eq\f(CD,BC).图1图2图31、在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=2eq\r(2),AB=3,则BD=____.2、如图,已知BE,CD是△ABC的两条高,连接DE,求证:△ADE∽△ACB.

3、如图,AD与BC相交于点E,点F在BD上,且AB∥EF∥CD,求证:eq\f(1,AB)+eq\f(1,CD)=eq\f(1,EF).【模型】三、“手拉手”旋转型模型展示:如图,若△ABC∽△ADE,则△ABD∽△ACE.[来.Com]1、如图,D为△ABC内一点,E为△ABC外一点,且∠ABC=∠DBE,∠3=∠4.求证:(1)△ABD∽△CBE;(2)△ABC∽△DBE.【模型】四、“子母(双垂直)”型模型展示:如图,直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.常见的结论有:CA2=AD·AB,BC2=BD·BA,CD2=DA·DB.1、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.如果AC=3,AB=6,那么AD的值为()A.eq\f(3,2)B.eq\f(9,2)C.eq\f(3\r(3),2)D.3eq\r(3)2、如图,AD∥BC,AE平分∠DAB,BE平分∠ABC,EF⊥AB.证明:△AEF∽△ABE.

【模型】五、“三垂直”模型与“一线三等角”模型模型展示:(1)“三垂直”模型如图1,∠B=∠D=∠ACE=90°,则△ABC∽△CDE.(2)“一线三等角”模型如图2,∠B=∠ACE=∠D,则△ABC∽△CDE.特别地,连接AE,若C为BD的中点,则△ACE∽△ABC∽△CDE.1、如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE.(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长.

2、如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D,F分别在边AB,AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.[【基础训练】1.(2019浙江杭州中考)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.= B.= C.= D.=2.如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A. B. C. D.3.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.54.已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5 B.9:25 C.5:3 D.25:95.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是()A.= B.= C.= D.=6.已知△ABC∽△A'B'C',AB=8,A'B'=6,则=()A.2 B. C.3 D.7.如图,已知△AOB和△A1OB1是以点O为位似中心的位似图形,且△AOB和△A1OB1的周长之比为1:2,点B的坐标为(﹣1,2),则点B1的坐标为()A.(2,﹣4) B.(1,﹣4) C.(﹣1,4) D.(﹣4,2)

填空题1.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.2.如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.3.已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上的一点,若CE=,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为.4.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图①,写出完整的证明过程结论应用:在▱ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图②,若▱ABCD为正方形,且AB=6,则OF的长为.(2)如图③,连结DE交AC于点G,若四边形OFEG的面积为,则▱ABCD的面积为.5.如图,A是反比例函数y=(x>0)图象上的一点,点B、D在y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则k的值为.

6.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是.

7.在△ABC中,∠C=90°,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D、E与端点不重合),如果△CDE与△ABC相似,那么CD的长是.8.如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE,△BCE,△CDE两两相似时,则AE=.【巩固提升】1.在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是1,直线BD与直线CP相交所成的较小角的度数是60°.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.2.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.3.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.4.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).5.已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.6.如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM∽△ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.

7.已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论