2024届湖北省云梦县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届湖北省云梦县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届湖北省云梦县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届湖北省云梦县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届湖北省云梦县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省云梦县九年级数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线2.2018年是江华县脱贫攻坚摘帽决胜年,11月25号市检查组来我县随机抽查了50户贫困户,其中还有1户还没有达到脱贫的标准,请聪明的你估计我县3000户贫困户能达到脱贫标准的大约有()户A.60 B.600 C.2940 D.24003.已知关于x的方程x2-kx-6=0的一个根为x=-3,则实数k的值为()A.1 B.-1 C.2 D.-24.如图,正方形的边长为,对角线相交于点,将直角三角板的直角顶点放在点处,两直角边分别与重叠,当三角板绕点顺时针旋转角时,两直角边与正方形的边交于两点,则四边形的周长()A.先变小再变大 B.先变大再变小C.始终不变 D.无法确定5.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE6.函数y=ax2﹣1与y=ax(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.7.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.8.从﹣1,0,1三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率为()A. B. C. D.9.已知与各边相切于点,,则的半径()A. B. C. D.10.如图,小明将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体,将这个几何体的侧面展开,得到的大致图形是()A. B.C. D.11.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)(

)A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里12.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或2二、填空题(每题4分,共24分)13.从,0,,,1.6中随机取一个数,取到无理数的概率是__________.14.如果线段a、b、c、d满足,则=_________.15.若m+n=3,则2m2+4mn+2n2-6的值为________.16.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:抽取的毛绒玩具数2151111211511111115112111优等品的频数19479118446292113791846优等品的频率1.9511.9411.9111.9211.9241.9211.9191.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到17.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)18.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.三、解答题(共78分)19.(8分)如图,是直径AB所对的半圆弧,点C在上,且∠CAB=30°,D为AB边上的动点(点D与点B不重合),连接CD,过点D作DE⊥CD交直线AC于点E.小明根据学习函数的经验,对线段AE,AD长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点D在AB上的不同位置,画图、测量,得到线段AE,AD长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9AE/cm0.000.410.771.001.151.000.001.004.04…AD/cm0.000.501.001.412.002.453.003.213.50…在AE,AD的长度这两个量中,确定_______的长度是自变量,________的长度是这个自变量的函数;(2)在下面的平面直角坐标系中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为________cm(结果精确到0.1).20.(8分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)若BC=8,AD=10,求四边形BFCD的面积.21.(8分)如图,是的直径,是上半圆的弦,过点作的切线交的延长线于点,过点作切线的垂线,垂足为,且与交于点,设,的度数分别是.用含的代数式表示,并直接写出的取值范围;连接与交于点,当点是的中点时,求的值.22.(10分)某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:⑴求y与x之间的函数关系式,并写出自变量x的取值范围;⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg?⑶设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?23.(10分)在如图所示的网格图中,已知和点(1)在网格图中点M为位似中心,画出,使其与的位似比为1:1.(1)写出的各顶点的坐标.24.(10分)已知,直线与抛物线相交于、两点,且的坐标是(1)求,的值;(2)抛物线的表达式及其对称轴和顶点坐标.25.(12分)如图,在中,,,于点,是上的点,于点,,交于点.(1)求证:;(2)当的面积最大时,求的长.26.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.2、C【分析】由题意根据用总户数乘以能达到脱贫标准所占的百分比即可得出答案.【详解】解:根据题意得:(户),答:估计我县3000户贫困户能达到脱贫标准的大约有2940户.故选:C.【点睛】本题考查的是通过样本去估计总体,注意掌握总体平均数约等于样本平均数是解题的关键.3、B【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】解:因为x=-3是原方程的根,所以将x=-3代入原方程,即(-3)2+3k−6=0成立,解得k=-1.故选:B.【点睛】本题考查的是一元二次方程的根即方程的解的定义,解题的关键是把方程的解代入进行求解.4、A【分析】由四边形ABCD是正方形,直角∠FOE,证明△DOF≌△COE,则可得四边形OECF的周长与OE的变化有关.【详解】解:四边形是正方形,,,即,又,随的变化而变化。由旋转可知先变小再变大,故选:.【点睛】本题考查了用正方形的性质来证明三角形全等,再利用相等线段进行变形,根据变化的线段来判定四边形OECF周长的变化.5、D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.6、B【分析】本题可先通过抛物线与y轴的交点排除C、D,然后根据一次函数y=ax图象得到a的正负,再与二次函数y=ax2的图象相比较看是否一致.【详解】解:由函数y=ax2﹣1可知抛物线与y轴交于点(0,﹣1),故C、D错误;A、由抛物线可知,a>0,由直线可知,a<0,故A错误;B、由抛物线可知,a>0,由直线可知,a>0,故B正确;故选:B.【点睛】此题考查的是一次函数的图象及性质和二次函数的图象及性质,掌握一次函数的图象及性质与系数关系和二次函数的图象及性质与系数关系是解决此题的关键.7、C【分析】根据平行线的性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.8、C【分析】列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【详解】解:根据题意列表如下:﹣110﹣1﹣﹣﹣(1,﹣1)(0,﹣1)1(﹣1,1)﹣﹣﹣(0,1)0(﹣1,0)(1,0)﹣﹣﹣所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率=;故选:C.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了点的坐标特征.9、C【分析】根据内切圆的性质,得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于点G,然后求出BG的长度,利用面积相等即可求出内切圆的半径.【详解】解:如图,连接OA、OB、OC、OD、OE、OF,作BG⊥AC于点G,∵是的内切圆,∴,AE=AD=5,BD=BF=2,CE=CF=3,∴AC=8,AB=7,BC=5,在Rt△BCG和Rt△ABG中,设CG=x,则AG=,由勾股定理,得:,∴,解得:,∴,∴,∵,∴;故选:C.【点睛】本题考查了三角形内切圆的性质,利用勾股定理解直角三角形,以及利用面积法求线段的长度,解题的关键是掌握三角形内切圆的性质,熟练运用三角形面积相等进行解题.10、C【分析】先根据面动成体得到圆锥,进而可知其侧面展开图是扇形,根据扇形的弧长公式求得扇形的圆心角,即可判别.【详解】设含有角的直角三角板的直角边长为1,则斜边长为,将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体是圆锥,此圆锥的底面周长为:,圆锥的侧面展开图是扇形,,即,∴,∵,∴图C符合题意,故选:C.【点睛】本题考查了点、线、面、体中的面动成体,解题关键是根据扇形的弧长公式求得扇形的圆心角.11、B【解析】根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE=

x,AB=BE=CE=2x,由AC=AD+DE+EC=2

x+2x=30,解之即可得出答案.【详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

设BD=x,

在Rt△ABD中,

∴AD=DE=

x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

x+2x=30,

∴x=

=

≈5.49,

故答案选:B.【点睛】考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.12、D【分析】当a=b时,可得出=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入=中即可求出结论.【详解】当a=b时,=1+1=2;

当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,

∴a、b为一元二次方程x2-6x+2=0的两根,

∴a+b=6,ab=2,

∴==1.

故选:D.【点睛】此题考查根与系数的关系,分a=b及a≠b两种情况,求出的值是解题的关键.二、填空题(每题4分,共24分)13、【分析】由题意可得共有5种等可能的结果,其中无理数有:,共2种情况,则可利用概率公式求解.【详解】∵共有5种等可能的结果,无理数有:,共2种情况,∴取到无理数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.14、【分析】设,,则,,代入计算即可求得答案.【详解】∵线段满足,∴设,,则,,∴,故答案为:.【点睛】本题考查了比例线段以及比例的性质,设出适当的未知数可使解题简便.15、1【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=1.16、1.92【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.【详解】观察可知优等品的频率在1.92左右,所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,故答案为:1.92.【点睛】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.17、【分析】过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长.【详解】如图,作,,垂足分别为点E,F,则四边形是矩形.由题意得,米,米,,斜坡的坡度为1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度为1∶2,∴,∴米,∴(米).∴坝底的长度等于米.故答案为.【点睛】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.18、【分析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.三、解答题(共78分)19、(1)AD,AE;(2)画图象见解析;(3)2.2,.【分析】(1)根据函数的定义可得答案;

(2)根据题意作图即可;

(3)满足AE=AD条件,实际上可以转化为正比例函数y=x.【详解】解:(1)根据题意,D为AB边上的动点,

∴AD的长度是自变量,AE的长度是这个自变量的函数;

∴故答案为:AD,AE.

(2)根据已知数据,作图得:

(3)当AE=AD时,y=x,在(2)中图象作图,并测量两个函数图象交点得:AD=2.2或3.3

故答案为:2.2或3.3【点睛】本题是圆的综合题,以几何动点问题为背景,考查了函数思想和数形结合思想.在(3)中将线段的数量转化为函数问题,设计到了转化的数学思想.20、(1)见解析;(2)四边形BFCD的面积为1.【分析】(1)由AB=AC可得,然后根据垂径定理的推论即可证得结论;(2)先根据ASA证得△BED≌△CEF,从而可得CF=BD,于是可推得四边形BFCD是平行四边形,进一步即得四边形BFCD是菱形;易证△AEC∽△CED,设DE=x,根据相似三角形的性质可得关于x的方程,解方程即可求出x的值,再根据菱形面积公式计算即可.【详解】(1)证明:∵AB=AC,∴,∵AE过圆心O,∴BE=CE;(2)解:∵AB=AC,BE=CE,∴AD⊥BC,∠BAD=∠CAD,∴∠BED=∠CEF=90°,∵CF∥BD,∴∠DBE=∠FCE,∴△BED≌△CEF(ASA),∴CF=BD,∴四边形BFCD是平行四边形,∵AD⊥BC,∴平行四边形BFCD是菱形;∴BD=CD,∴,∴∠CAE=∠ECD,∵∠AEC=∠CED=90°,∴△AEC∽△CED,∴,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴CE=4,AE=10-x,∴42=x(10﹣x),解得:x=2或x=8(舍去),∴DF=2DE=4,∴四边形BFCD的面积=×4×8=1.【点睛】本题考查了垂径定理、圆周角定理的推论、等腰三角形的性质、全等三角形的判定和性质、菱形的判定和性质、相似三角形的判定和性质以及一元二次方程的解法等知识,综合性强,具有一定的难度,熟练掌握上述基础知识是解题的关键.21、(1)β=90°-2α(0°<α<45°);(2)α=β=30°【分析】(1)首先证明,在中,根据两锐角互余,可知;(2)连接OF交AC于O′,连接CF,只要证明四边形AFCO是菱形,推出是等边三角形即可解决问题.【详解】解:(1)连接OC.∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【点睛】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题的关键.22、(1)y=-2x+1,10≤x≤2;(2)16元/kg;(3)W=-2(x-20)2+200,2元,192元.【分析】(1)根据一次函数过(12,36)(14,32)可求出函数关系式,然后验证其它数据是否符合关系式,进而确定函数关系式,(2)根据总利润为168元列方程解答即可,(3)先求出总利润W与x的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润,但应注意抛物线的对称轴,不能使用顶点式直接求.【详解】(1)设关系式为y=kx+b,把(12,36),(14,32)代入得:,解得:k=-2,b=1,∴y与x的之间的函数关系式为y=-2x+1,通过验证(15,30)(17,26)满足上述关系式,因此y与x的之间的函数关系式就是y=-2x+1.自变量的取值范围为:10≤x≤2.(2)根据题意得:(x-10)(-2x+1)=168,解得:x=16,x=24舍去,答:获得平均每天168元的利润,售价应定为16元/kg;(3)W=(x-10)(-2x+1)=-2x2+80x-10=-2(x-20)2+200,∵a=-2<0,抛物线开口向下,对称轴为x=20,在对称轴的左侧,y随x的增大而增大,∵10≤x≤2,∴当x=2时,W最大=-2(2-20)2+200=192元,答:W与x之间的函数关系式为W=-2(x-20)2+200,当该商品销售单价定为2元时,才能使经销商所获利润最大,最大利润是192元.【点睛】考查一次函数、二次函数的性质,求出相应的函数关系式和自变量的取值范围是解决问题的关键,在求二次函数的最值时,注意自变量的取值范围,容易出错.23、(1)图见解析;(1).【分析】(1)先根据位似图形的性质和位似比得出点的位置,再顺次连接点即可得;(1)先根据点的位置得出它们的坐标,再根据点分别为的中点即可得出答案.【详解】(1)先连接,再根据位似图形的性质和位似比可得点分别为的中点,再顺次连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论