2024届吉林省长春市德惠市第十九中学九年级数学第一学期期末统考模拟试题含解析_第1页
2024届吉林省长春市德惠市第十九中学九年级数学第一学期期末统考模拟试题含解析_第2页
2024届吉林省长春市德惠市第十九中学九年级数学第一学期期末统考模拟试题含解析_第3页
2024届吉林省长春市德惠市第十九中学九年级数学第一学期期末统考模拟试题含解析_第4页
2024届吉林省长春市德惠市第十九中学九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市德惠市第十九中学九年级数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.方差是刻画数据波动程度的量.对于一组数据,,,…,,可用如下算式计算方差:,其中“5”是这组数据的()A.最小值 B.平均数 C.中位数 D.众数2.在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,从布袋中任意摸出一个球是白球的概率()A. B.C. D.3.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根4.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x,根据题意可列方程为(

)A.363(1+2x)=300 B.300(1+x2)=363C.300(1+x)2=363 D.300+x2=3635.如图,抛物线的图像交轴于点和点,交轴负半轴于点,且,下列结论错误的是()A. B. C. D.6.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm7.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.8.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离9.下列一元二次方程有两个相等实数根的是()A.x2=0 B.x2=4 C.x2﹣2x﹣1=0 D.x2+1=010.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A. B. C. D.11.已知x=5是分式方程=的解,则a的值为()A.﹣2 B.﹣4 C.2 D.412.如图,在Rt△ABC中,AC=3,AB=5,则cosA的值为()A. B. C. D.二、填空题(每题4分,共24分)13.我区某校举行冬季运动会,其中一个项目是乒乓球比赛,比赛为单循环制,即所有参赛选手彼此恰好比赛一场.记分规则是:每场比赛胜者得3分、负者得0分、平局各得1分.赛后统计,所有参赛者的得分总知为210分,且平局数不超过比赛总场数的,本次友谊赛共有参赛选手__________人.14.一组正方形按如图所示的方式放置,其中顶点在轴上,顶点,,,,,,在轴上,已知正方形的边长为,,则正方形的边长为__________________.15.如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=_____.16.如图,已知等边的边长为4,,且.连结,并延长交于点,则线段的长度为__________.17.如图,起重机臂长,露在水面上的钢缆长,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂逆时针转动到的位置,此时露在水面上的钢缆的长度是___________.18.将抛物线向左平移3个单位,再向下平移2个单位,则得到的抛物线解析式是________.(结果写成顶点式)三、解答题(共78分)19.(8分)如图,在中,,,.点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.作于,连接,设运动时间为,解答下列问题:(1)设的面积为,求与之间的函数关系式,的最大值是;(2)当的值为时,是等腰三角形.20.(8分)某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)(1)试求与之间的函数表达式.(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?21.(8分)某配餐公司有A,B两种营养快餐。一天,公司售出两种快餐共640份,获利2160元。两种快餐的成本价、销售价如下表。A种快餐B种快餐成本价5元/份6元/份销售价8元/份10元/份(1)求该公司这一天销售A、B两种快餐各多少份?(2)为扩大销售,公司决定第二天对一定数量的A、B两种快餐同时举行降价促销活动。降价的A、B两种快餐的数量均为第一天销售A、B两种快餐数量的2倍,且A种快餐按原销售价的九五折出售,若公司要求这些快餐当天全部售出后,所获的利润不少于3280元,那么B种快餐最低可以按原销售价打几折出售?22.(10分)如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.23.(10分)如图所示,分别切的三边、、于点、、,若,,.(1)求的长;(2)求的半径长.24.(10分)先化简,再求值:,其中.25.(12分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.26.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据方差公式的定义即可求解.【详解】方差中“5”是这组数据的平均数.故选B.【点睛】此题主要考查平均数与方差的关系,解题的关键是熟知方差公式的性质.2、C【分析】根据概率公式,求摸到白球的概率,即用白球除以小球总个数即可得出得到黑球的概率.【详解】∵在一个布袋里放有个红球,个白球和个黑球,它们除了颜色外其余都相同,∴从布袋中任意摸出一个球是白球的概率为:.故选:C.【点睛】此题主要考查了概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.3、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.4、C【分析】这两年小明收到的微信红包的年平均增长率为x,则2017年收到300(1+x),2018年收到300(1+x)2,根据题意列方程解答即可.【详解】由题意可得,300(1+x)2=363.故选C.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n

=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.5、B【分析】A根据对称轴的位置即可判断A正确;图象开口方向,与y轴的交点位置及对称轴位置可得,,即可判断B错误;把点坐标代入抛物线的解析式即可判断C;把B点坐标代入抛物线的解析式即可判断D;【详解】解:观察图象可知对称性,故结论A正确,由图象可知,,,,故结论B错误;抛物线经过,,故结论C正确,,,点坐标为,,,,故结论D正确;故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向和大小:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右.(简称:左同右异);常数项决定抛物线与轴交点:抛物线与轴交于;抛物线与轴交点个数由△决定:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.6、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.7、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.8、C【解析】分析:首先画出图形,根据点的坐标得到圆心到X轴的距离是4,到Y轴的距离是3,根据直线与圆的位置关系即可求出答案.解答:解:圆心到X轴的距离是4,到y轴的距离是3,4=4,3<4,∴圆与x轴相切,与y轴相交,故选C.9、A【分析】根据一元二次方程根的判别式以及一元二次方程的解法,逐一判断选项,即可.【详解】A.x2=0,解得:x1=x2=0,故本选项符合题意;B.x2=4,解得:x1=2,x2=-2,故本选项不符合题意;C.x2﹣2x﹣1=0,,有两个不相等的根,故不符合题意;D.x2+1=0,方程无解,故不符合题意.故选A.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式的意义,是解题的关键.10、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=3.0924×1012,

故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、C【分析】现将x=5代入分式方程,再根据解分式方程的步骤解出a即可.【详解】∵x=5是分式方程=的解,∴=,∴=,解得a=1.故选:C.【点睛】本题考查解分式方程,关键在于代入x的值,熟记分式方程的解法.12、B【分析】根据余弦的定义计算即可.【详解】解:在Rt△ABC中,;故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.二、填空题(每题4分,共24分)13、2【分析】所有场数中,设分出胜负有x场,平局y场,可知分出胜负的x场里,只有胜利一队即3分,总得分为3x;平局里两队各得1分,总得分为2y;所以有3x+2y=1.又根据“平局数不超过比赛场数的”可求出x与y之间的关系,进而得到满足的9组非负整数解.又设有a人参赛,每人要与其余的(a-1)人比赛,即共a(a-1)场,但这样每两人之间是比赛了两场的,所以单循环即场,即=x+y,找出x与y的9组解中满足关于a的方程有正整数解,即求出a的值.【详解】设所有比赛中分出胜负的有x场,平局y场,得:由①得:2y=1-3x由②得:2y≤x∴1-3x≤x解得:x≥,∵x、y均为非负整数∴,,,……,设参赛选手有a人,得:=x+y化简得:a2-a-2(x+y)=0∵此关于a的一元二次方程有正整数解∴△=1+8(x+y)必须为平方数由得:1+8×(54+24)=625,为25的平方∴解得:a1=-12(舍去),a2=2∴共参赛选手有2人.故答案为:2.【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,一元二次方程的应用.由于要求的参赛人数与条件给出的等量关系没有直接联系,故可大胆多设个未知数列方程或不等式,再逐步推导到要求的方向.14、【分析】由正方形的边长为,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根据三角函数的定义和正方形的性质,即可得到答案.【详解】∵正方形的边长为,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此类推:正方形的边长为:,∴正方形的边长为:.故答案是:.【点睛】本题主要考查正方形的性质和三角函数的定义综合,掌握用三角函数的定义解直角三角形,是解题的关键.15、35°【分析】先根据三角形外角性质求出∠C的度数,然后根据圆周角定理得到∠B的度数.【详解】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案为35°.【点睛】本题主要考查的是三角形的外角性质以及圆周角定理,这是一道综合性几何题,掌握三角形的外角性质以及圆周角定理是解题关键.16、1【分析】作CF⊥AB,根据等边三角形的性质求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,设BE为x,再根据对应线段成比例即可求解.【详解】作CF⊥AB,垂足为F,∵△ABC为等边三角形,∴AF=AB=2,∴CF=又∵BD⊥AB,∴CF∥BD,∴△BDE∽△FCE,设BE为x,∴,即解得x=1故填:1.【点睛】此题主要考查相似三角形的判定与性质,解题的根据是根据题意构造相似三角形进行求解.17、30m【解析】首先在Rt△ABC中,利用正弦值可推出∠CAB=45°,然后由转动角度可得出∠C'AB'=60°,在Rt△C'AB'中利用60°的正弦即可求出B'C'.【详解】再Rt△ABC中,∵∴∠CAB=45°起重机臂逆时针转动到的位置后,∠C'AB'=∠CAB+15°=60°在Rt△C'AB'中,B'C'=m故答案为:30m.【点睛】本题考查了解直角三角形,熟练掌握直角三角形中的边角关系是解题的关键.18、【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=x2向左平移3个单位后所得直线解析式为:y=(x+3)2;再向下平移2个单位为:.故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.三、解答题(共78分)19、(1);(2)或或【分析】(1)先通过条件求出,再利用对应边成比例求出PD,再利用面积公式写出式子,再根据顶点公式求最大值即可.(2)分别讨论AQ=AP时,AQ=PQ时,AP=PQ时的三种情况.【详解】解(1),,又,.,,.,,,,,,,的最大值是.(2)由(1)知:AQ=2t,AP=10-2t,①当AQ=AP时,即2t=10-2t,解得t=.②当AQ=PQ时,作QE⊥AP,如图所示,根据等腰三角形的性质,AE=,易证Rt△AQE∽Rt△ACB,∴,即,解得t=.③当AP=PQ时,作PF⊥AQ,如图所示,根据等腰三角形的性质,AF=,易证Rt△AFP∽Rt△ACB,∴,即,解得t=.综上所述,t=或或.【点睛】本题考查三角形的动点问题及相似的判定和性质,关键在于合理利用相似得到等量关系.20、(1)w=;(2)游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元【分析】(1)根据及利润=票房收入-运营成本即可得出化简即可.(2)根据二次函数的性质及对称轴公式即可得最大值,及x的值.【详解】(1)根据题意,得.(2)∵中,,∴有最大值.当时,最大,最大值为1500.答:游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元.【点睛】本题考查了二次函数的实际应用,结合二次函数的性质即可得到最大值.21、(1)该公司这一天销售A、B两种快餐各400份,240份;(2)B种快餐最低可以按原销售价打8.5折出售【分析】(1)设学校第一次订购A种快餐x份B种快餐y份,根据“两种快餐共计640份,该公司共获利2160元”列出方程组进行求解;(2)设B种快餐每份最低打a折,根据利润不少于3280元列出关于a的不等式,解出a的最小值.【详解】(1)设销售A种快餐份,则B种快餐(640-)份。(8-5)+(10-6)(640-)=2160解得:=400640-=240份∴该公司这一天销售A、B两种快餐各400份,240份(2)设B种快餐每份最低打折。(8×0.95-5)×400×2+(0.1×10-6)×240×2≥3280解得:≥8.5∴B种快餐最低可以按原销售价打8.5折出售【点睛】本题考查一元一次不等式和二元一次方程组的实际应用,解题关键是读懂题意,根据题中所述找出其中的等量和不等量关系,难度一般.22、35°【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论