版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省黔西南市数学九年级第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列事件中是必然发生的事件是()A.投掷一枚质地均匀的骰子,掷得的点数是奇数;B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖;C.掷一枚硬币,正面朝上;D.任意画一个三角形,其内角和是180°.2.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm3.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.84.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是()A.10m B.10m C.15m D.5m5.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20° B.25° C.40° D.50°6.如图,在△ABO中,∠B=90º,OB=3,OA=5,以AO上一点P为圆心,PO长为半径的圆恰好与AB相切于点C,则下列结论正确的是().A.⊙P的半径为B.经过A,O,B三点的抛物线的函数表达式是C.点(3,2)在经过A,O,B三点的抛物线上D.经过A,O,C三点的抛物线的函数表达式是7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180° B.经过有交通信号的路口,遇到红灯C.太阳从东方升起 D.任意一个五边形的外角和等于540°8.如图,中,内切圆和边、、分别相切于点、、,若,,则的度数是()A. B. C. D.9.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝上C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球10.下列方程中,关于x的一元二次方程的是()A.x+=2 B.ax2+bx+c=0C.(x﹣2)(x﹣3)=0 D.2x2+y=111.抛物线与坐标轴的交点个数是()A.3 B.2 C.1 D.012.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55° B.70° C.110° D.125°二、填空题(每题4分,共24分)13.如图,分别以等边三角形的每个顶点为圆心,边长为半径,在另两个顶点之间作一段弧,三段弧围成的曲边三角形称为“勒洛三角形”,若等边三角形的边长为2,则“勒洛三角形”的面积为_________.14.如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB和弧BC都经过圆心O,则阴影部分的面积为______15.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.16.若点P的坐标是(﹣4,2),则点P关于原点的对称点坐标是_____.17.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数,其图象如图所示.当气体体积为时,气压是__________.18.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为_____.三、解答题(共78分)19.(8分)如图,一次函数与反比例函数的图象交于、两点,与坐标轴分别交于、两点.(1)求一次函数的解析式;(2)根据图象直接写出中的取值范围;(3)求的面积.20.(8分)某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.21.(8分)为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?(2)一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、、、,在同一个平面内,点、、在同一条直线上,且,问建筑物高为多少米?22.(10分)如图1,抛物线y=ax2+bx-3经过A、B、C三点,己知点A(-3,0)、C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB下方的抛物线上一动点(不与A、B重合).①过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;②如图2,连接AP,以AP为边作图示一侧的正方形APMN,当它恰好有一个顶点落在抛物线对称轴上时,求出对应的P点的坐标.23.(10分)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.24.(10分)解方程:(1)(x2)(x3)12(2)3y212y25.(12分)如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(n,3(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣6x>0时x(3)若M是x轴上一点,且△MOB和△AOB的面积相等,求M点坐标.26.如图,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若AB=8,求圆环的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用随机事件以及概率的意义分别分析得出答案.【详解】解:A、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,不合题意;B、某种彩票中奖率是1%,则买这种彩票100张有可能会中奖,不合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选D.【点睛】本题主要考查了概率的意义以及随机事件,解决本题的关键是要正确区分各事件的意义.2、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.3、D【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【详解】试题解析:设圆锥的底面半径为r圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是∴弧长即圆锥底面的周长是解得,r=4,∴底面圆的直径为1.故选:D.【点睛】本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4、A【解析】试题分析:河堤横断面迎水坡AB的坡比是,即,∴∠BAC=30°,∴AB=2BC=2×5=10,故选A.考点:解直角三角形5、B【解析】连接OA,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA,如图:∵PA是⊙O的切线,切点为A,∴OA⊥AP,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.6、D【分析】A、连接PC,根据已知条件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得点B坐标,由A、B、O三点坐标,可求出抛物线的函数表达式;C、由射影定理及勾股定理可计算出点C坐标,将点C代入抛物线表达式即可判断;D、由A,O,C三点坐标可求得经过A,O,C三点的抛物线的函数表达式.【详解】解:如图所示,连接PC,∵圆P与AB相切于点C,所以PC⊥AB,又∵∠B=90º,所以△ACP∽△ABO,设OP=x,则OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半径为,故A选项错误;过B作BD⊥OA交OA于点D,∵∠B=90º,BD⊥OA,由勾股定理可得:,由面积相等可得:∴,∴由射影定理可得,∴∴,设经过A,O,B三点的抛物线的函数表达式为;将A(5,0),O(0,0),代入上式可得:解得,,c=0,经过A,O,B三点的抛物线的函数表达式为,故B选项错误;过点C作CE⊥OA交OA于点E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴点C坐标为,故选项C错误;设经过A,O,C三点的抛物线的函数表达式是,将A(5,0),O(0,0),代入得,解得:,∴经过A,O,C三点的抛物线的函数表达式是,故选项D正确.【点睛】本题考查相似三角形、二次函数、圆等几何知识,综合性较强,解题的关键是要能灵活运用相似三角形的性质计算.7、B【解析】根据事件发生的可能性大小判断相应事件的类型.【详解】A.任意画一个三角形,其内角和为180°是必然事件;B.经过有交通信号的路口,遇到红灯是随机事件;C.太阳从东方升起是必然事件;D.任意一个五边形的外角和等于540°是不可能事件.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、D【分析】连接IE,IF,先利用三角形内角和定理求出的度数,然后根据四边形内角和求出的度数,最后利用圆周角定理即可得出答案.【详解】连接IE,IF∵,∵I是内切圆圆心∴故选:D.【点睛】本题主要考查三角形内角和定理,四边形内角和,圆周角定理,掌握三角形内角和定理,四边形内角和,圆周角定理是解题的关键.9、D【分析】根据确定事件和随机事件的概念对各个事件进行判断即可.【详解】解:明天我市下雨、抛一枚硬币,正面朝上、走出校门,看到的第一辆汽车的牌照的末位数字是偶数都是随机事件,一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球是必然事件,故选:D.【点睛】本题考查的是确定事件和随机事件,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的;在一定条件下,可能发生也可能不发生的事件,称为随机事件.10、C【分析】利用一元二次方程的定义判断即可.含有一个未知数,并且未知数的最高次数是2次的整式方程是一元二次方程.【详解】解:A、x+=2不是整式方程,不符合题意;B、ax2+bx+c=0不一定是一元二次方程,不符合题意;C、方程整理得:x2﹣5x+6=0是一元二次方程,符合题意;D、2x2+y=1不是一元二次方程,不符合题意.故选:C.11、A【详解】解:∵抛物线解析式,令,解得:,∴抛物线与轴的交点为(0,4),令,得到,∴抛物线与轴的交点分别为(,0),(1,0).综上,抛物线与坐标轴的交点个数为1.故选A.【点睛】本题考查抛物线与轴的交点,解一元一次、二次方程.12、D【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【详解】由圆周角定理得,∠A=∠BOD=55°,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=180°−∠A=125°,故选:C.【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质.二、填空题(每题4分,共24分)13、【分析】图中勒洛三角形是由三块相同的扇形叠加而成,其面积三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】解:过作于,∵是等边三角形,,,,,,的面积为,,勒洛三角形的面积,故答案为:.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出勒洛三角形的面积三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.14、3π【分析】作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=120°,进而求得∠AOC=120°,从而得到阴影面积为圆面积的,再利用面积公式求解.【详解】如图,作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC==3π.故答案为:3π.【点睛】本题考查了学生转化面积的能力,将不规则的面积转化为规则的面积是本题的解题关键.15、m≤1【分析】利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,
解得.
故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.16、(4,﹣2).【分析】直接利用关于原点对称点的性质得出答案.【详解】解:点P的坐标是(﹣4,2),则点P关于原点的对称点坐标是:(4,﹣2).故答案为:(4,﹣2).【点睛】本题考查点的对称,熟记口诀:关于谁对称,谁不变,另一个变号,关于原点对称,两个都变号.17、1【解析】设出反比例函数解析式,把A坐标代入可得函数解析式,再将V=1代入即可求得结果.【详解】解:设,代入得:,解得:,故,当气体体积为,即V=1时,(kPa),故答案为:1.【点睛】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.18、120°【分析】利用圆周角定理得到∠BAC=∠BOC,再利用∠BAC+∠BOC=180°可计算出∠BOC的度数.【详解】解:∵∠BAC和∠BOC所对的弧都是,∴∠BAC=∠BOC∵∠BAC+∠BOC=180°,∴∠BOC+∠BOC=180°,∴∠BOC=120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.三、解答题(共78分)19、(1)y=-2x+6;(2)或;(1)1.【解析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)由图直接解答;(1)将△AOB的面积转化为S△AON-S△BON的面积即可.【详解】(1)∵点在反比例函数上,∴,解得,∴点的坐标为,又∵点也在反比例函数上,∴,解得,∴点的坐标为,又∵点、在的图象上,∴,解得,∴一次函数的解析式为.(2)根据图象得:时,的取值范围为或;(1)∵直线与轴的交点为,∴点的坐标为,.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,利用图像解不等式,及割补法求图形的面积,数形结合是解题的关键.20、43m.【解析】直接利用相似三角形的判定与性质得出,进而得出答案.【详解】解由题意可得△AEC∽△ADB,则=,故=,解得DB=43,答:小雁塔的高度为43m.【点睛】本题考查了相似三角形的判定与性质,正确得出△AEC∽△ADB是解题的关键.21、(1)m(2)米【解析】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN的长;(2)在RT△BMK中,求得BK=MK=50米,从而求得EM=84米;在RT△HEM中,求得,继而求得米.详解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB长米,M是AB的中点,∴AM=(米),∴AF=MF=AM•cos∠AMF=(米),在中,∵斜坡AN的坡比为∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),
EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休闲平台DE的长是米;建筑物GH高为米.点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.22、(1)y=x2+2x﹣3;(2)①(﹣,),②(﹣-1,2)或(,)或(-1,-4)【分析】(1)直接用待定系数法求解即可;(2)①由抛物线解析式y=x2+2x﹣3,令x=0,y=﹣3,求出点B(0,-3),设直线AB的解析式为y=kx+b,把A(﹣3,0)和B(0,﹣3)代入y=kx+b求出k=-1,b=-3,直线AB的解析式为y=﹣x﹣3,设E(x,﹣x﹣3),则PE=﹣(x+)2+,从而得当PE最大时,P点坐标为(﹣,);②抛物线对称轴为直线x=﹣1,A(﹣3,0),正方形APMN的顶点落在抛物线对称轴上的情况有两种情况,i)当点N在抛物线对称轴直线x=﹣1上;ii)当点M在抛物线对称轴直线x=﹣1;根据这两种情况,作出图形,找到线段之间的等量关系,解之即可..【详解】(1)把A(﹣3,0)和C(1,0)代入y=ax2+bx﹣3得,,解得,∴抛物线解析式为y=x2+2x﹣3;(2)设P(x,x2+2x﹣3),直线AB的解析式为y=kx+b,①由抛物线解析式y=x2+2x﹣3,令x=0,y=﹣3,∴B(0,﹣3),把A(﹣3,0)和B(0,﹣3)代入y=kx+b得,解得,∴直线AB的解析式为y=﹣x﹣3,∵PE⊥x轴,∴E(x,﹣x﹣3),∵P在直线AB下方,∴PE=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,当x=﹣时,y=x2+2x﹣3=,∴当PE最大时,P点坐标为(﹣,).②抛物线对称轴为直线x=﹣1,A(﹣3,0),正方形APMN的顶点落在抛物线对称轴上的情况有三种:i)当点N在抛物线对称轴直线x=﹣1上时,作PR⊥x轴于点R,设对称轴与x轴的交点为L,如图①,∵四边形APMN为正方形,∴AN=AP,∠PAR+∠RAN=90°,∵∠PAR+∠APR=90°,∴∠APR=∠RAN,在△APR和△NAL中∴△APR≌△NAL(AAS),∴PR=AL,∵AL=﹣1-(﹣3)=2,∴PR=2,此时x2+2x﹣3=2,解得x1=-1,x2=﹣-1,∵P在直线AB下方,∴x=﹣-1,∴P(﹣-1,2);ii)当点M在抛物线对称轴直线x=﹣1上时,如图②,过点P作PH⊥对称轴于点H、作AG⊥HP于点G,∵四边形APMN为正方形,∴PA=PM,∠APM=90°,∴∠APG+∠MPH=90°,∵∠APG+∠GAP=90°,∴∠GAP=∠HPM,在△APG和△PMH中∴△APG≌△PMH(AAS),∴AG=PH,PG=MH,∴GH=PG+PH∵P(x,x2+2x-3)∴x+3+(-x2-2x+3)=2,解得x1=,x2=,∵P在直线AB下方,∴x=,∴P(,)ⅲ)当点P在抛物线对称轴直线x=-1.上时,P(-1,-4),终上所述,点P对应的坐标为(﹣-1,2)或(,)或(-1,-4).【点睛】本题考查了待定系数法求一次函数与二次函数解析式、配方法求二次函数最值、全等三角形的判定与性质等知识点,有一定综合性,难度适中.第(3)问的两种情况当中,根据图形,构造全等三角形是关键.23、AP=10﹣5.【分析】先根据题意判断出△O′PB是等腰直角三角形,由勾股定理求出PB的长,进而可得出AP的长.【详解】解:连接PO´∵∠OBA′=45°,O′P=O′B,∴∠O´PB=∠O´BP=45°,∠PO´B=90°∴△O′PB是等腰直角三角形,∵AB=10,∴O′P=O′B=5,∴PB==BO′=5,∴AP=AB﹣BP=10﹣5.【点睛】本题考查了旋转的性质、勾股定理、等腰直角三角形的判定,根据旋转性质判定出△O′PB是等腰直角三角形解题的关键.24、(1),;(2)【分析】(1)首先把方程整理成一元二次方程的一般式,然后利用因式分解法解方程即可;(2)首先把方程整理成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《客户跟踪技巧》课件
- 《chapter固定资产》课件
- 《肩关节镜简介》课件
- 单位管理制度合并选集【人事管理篇】
- 2024第八届全国职工职业技能大赛(网约配送员)网上练兵考试题库-中(多选题)
- 单位管理制度分享汇编人事管理篇
- 单位管理制度分享大全人力资源管理篇十篇
- 单位管理制度范例选集人力资源管理篇十篇
- 单位管理制度呈现合集人事管理十篇
- 《电子欺骗》课件
- 人教版八年级音乐上册 第一单元 《拉起手》 教案
- 《马克思主义基本原理》学习通超星期末考试答案章节答案2024年
- 期末测试卷(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 《旅游大数据》-课程教学大纲
- 工艺以及质量保证措施,工程实施的重点、难点分析和解决方案
- 七年级上册道德与法治第1-4单元共4个单元复习教学设计
- SY-T 5412-2023 下套管作业规程
- 四色安全风险空间分布图设计原则和要求
- 八年级化学下册期末试卷及答案【完整版】
- 合伙人散伙分家协议书范文
- 红色旅游智慧树知到期末考试答案章节答案2024年南昌大学
评论
0/150
提交评论