




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省泉州第十六中学数学九上期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段2.下列关系式中,y是x的反比例函数的是()A.y=4x B. C. D.3.若m、n是一元二次方程x2-5x-2=0的两个实数根,则m+n-mn的值是()A.-7 B.7 C.3 D.-34.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A. B. C. D.5.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A.摸出的是白球 B.摸出的是黑球C.摸出的是红球 D.摸出的是绿球6.已知如图,中,,,,边的垂直平分线交于点,交于点,则的长是().A. B. C.4 D.67.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)8.要使方程是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠3且b≠-1 D.a≠3且b≠-1且c≠09.已知⊙O的半径为6cm,OP=8cm,则点P和⊙O的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.无法判断10.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.711.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A'B'C',点A在边B'C上,则∠B'的大小为()A.42° B.48° C.52° D.58°12.如图,周长为28的菱形中,对角线、交于点,为边中点,的长等于()A.3.5 B.4 C.7 D.14二、填空题(每题4分,共24分)13.设a,b是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为________.14.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.15.如图,CD是的直径,E为上一点,,A为DC延长线上一点,AE交于点B,且,则的度数为__________.
16.若二次函数的图象经过点(3,6),则17.如图,四边形ABCD是正方形,若对角线BD=4,则BC=_____.18.如图,的弦,半径交于点,是的中点,且,则的长为__________.三、解答题(共78分)19.(8分)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,即AQ是⊙O的切线,若∠QAP=α,地球半径为R,求:(1)航天飞机距地球表面的最近距离AP的长;(2)P、Q两点间的地面距离,即的长.(注:本题最后结果均用含α,R的代数式表示)20.(8分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.21.(8分)如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.22.(10分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积.23.(10分)2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道.根据市场调查,在文旦上市销售的30天中,其销售价格(元公斤)与第天之间满足函数(其中为正整数);销售量(公斤)与第天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量与第天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润的最大值及相应的的值.24.(10分)关于的一元二次方程.(1)求证:此方程必有两个不相等的实数根;(2)若方程有一根为1,求方程的另一根及的值.25.(12分)中华鲟是国家一级保护动物,它是大型洄游性鱼类,生在长江,长在海洋,受生态环境的影响,数量逐年下降。中华鲟研究所每年定期通过人工养殖放流来增加中华鲟的数量,每年放流的中华鲟中有少数体内安装了长效声呐标记,便于检测它们从长江到海洋的适应情况,这部分中华鲟简称为“声呐鲟”,研究所收集了它们到达下游监测点A的时间t(h)的相关数据,并制作如下不完整统计图和统计表.已知:今年和去年分别有20尾“声呐鲟”在放流的96小时内到达监测点A,今年落在24<t≤48内的“声呐鲟”比去年多1尾,今年落在48<t≤72内的数据分别为49,60,68,68,1.去年20尾“声呐鲟”到达监测点A所用时间t(h)的扇形统计图今年20尾“声呐鲟”到达监测点A所用时间t(h)的频数分布直方图关于“声呐鲟”到达监测点A所用时间t(h)的统计表平均数中位数众数方差去年64.2687315.6今年56.2a68629.7(1)请补全频数分布直方图,并根据以上信息填空:a=;(2)中华鲟到达海洋的时间越快,说明它从长江到海洋的适应情况就越好,请根据上述信息,选择一个统计量说明去年和今年中哪一年中华鲟从长江到海洋的适应情况更好;(3)去年和今年该放流点共放流1300尾中华鲟,其中“声呐鲟”共有50尾,请估计今年和去年在放流72小时内共有多少尾中华鲟通过监测站A.26.在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次为分,分,分,分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在分及其以上的人数是_______人;(2)补全下表中、、的值:平均数(分)中位数(分)众数(分)方差一班二班(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.
参考答案一、选择题(每题4分,共48分)1、A【解析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【详解】解:A.所有矩形对应边的比不一定相等,所以不一定都是相似的,A不正确,符合题意;B.若线段a=5cm,b=2cm,则a:b=5:2,B正确,不符合题意;C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cm,C正确,不符合题意;D.∵1:2=2:4,∴四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段,D正确,不符合题意;故选:A.【点睛】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.2、C【解析】根据反比例函数的定义判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选C.【点睛】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.3、B【解析】解:∵m、n是一元二次方程x2-5x-2=0的两个实数根,∴m+n=5,mn=-2,∴m+n-mn=5-(-2)=1.故选A.4、A【分析】根据平行线分线段成比例定理与相似三角形的性质,逐项判断即得答案.【详解】解:A、∵DE∥BC,∴,故本选项正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误;C、∵DE∥BC,∴△ADE∽△ABC,∴,故本选项错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误.故选:A.【点睛】本题考查了平行线分线段成比例定理和相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解答的关键.5、A【分析】个数最多的就是可能性最大的.【详解】解:因为白球最多,所以被摸到的可能性最大.故选A.【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.6、B【分析】根据勾股定理求出BC,根据线段垂直平分线性质和勾股定理可求AE.【详解】因为中,,,,所以BC=因为的垂直平分线交于点,所以AE=EC设AE=x,则BE=8-x,EC=x在Rt△BCE中,由BE2+BC2=EC2可得x2+(8-x)2=62解得x=.即AE=故选:B【点睛】考核知识点:勾股定理,线段垂直平分线.根据勾股定理求出相应线段是关键.7、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,∵其中一个交点的坐标为,则另一个交点的坐标为,故选C.【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.8、B【分析】根据一元二次方程的定义选出正确选项.【详解】解:∵一元二次方程二次项系数不能为零,∴,即.故选:B.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.9、C【分析】根据点与圆的位置关系即可求解.【详解】∵⊙O的半径为6cm,OP=8cm,∴点P到圆心的距离OP=8cm,大于半径6cm,∴点P在圆外,故选:C.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.10、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.11、B【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=42°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=48°.【详解】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=42°,∴∠B′=90°﹣∠ACA′=48°.故选:B.【点睛】此题主要考查角度的求解,解题的关键是熟知旋转的性质.12、A【解析】根据菱形的周长求出其边长,再根据菱形的性质得出对角线互相垂直,最后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】∵四边形是菱形,周长为28∴AB=7,AC⊥BD∴OH=故选:A【点睛】本题考查的是菱形的性质及直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是关键.二、填空题(每题4分,共24分)13、【分析】此题实际上求的值.设t=a2+b2,将原方程转化为关于t的一元二次方程t(t+1)=12,通过解方程求得t的值即可.【详解】设t=a2+b2,则由原方程,得t(t+1)=12,整理,得(t+4)(t-3)=0,解得t=3或t=-4(舍去).则a2+b2=3,∵a,b是一个直角三角形两条直角边的长,∴这个直角三角形的斜边长为.故答案是:.【点睛】此题考查了换元法解一元二次方程,以及勾股定理,熟练运用勾股定理是解本题的关键.14、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15、16°【分析】连接OB,根据,可得,设∠A=x,则∠AOB=x,列方程求出x的值即可.【详解】连接OB设∠A=x,则∠AOB=x即∠A的度数为16°故答案为:16°.【点睛】本题考查了圆的角度问题,掌握等边对等角、三角形外角定理是解题的关键.16、.【详解】试题分析:根据点在抛物线上点的坐标满足方程的关系,由二次函数的图象经过点(3,6)得:.17、【分析】由正方形的性质得出△BCD是等腰直角三角形,得出BD=BC=4,即可得出答案.【详解】∵四边形ABCD是正方形,∴CD=BC,∠C=90°,∴△BCD是等腰直角三角形,∴BD=BC=4,∴BC=2,故答案为:2.【点睛】本题考查了正方形的性质以及等腰直角三角形的判定与性质;证明△BCD是等腰直角三角形是解题的关键.18、2【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4,∠AMO=90°,∴在Rt△AMO中OA==5.∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三、解答题(共78分)19、(1)AP=﹣R;(2)【分析】(1)连接OQ,根据题意可得:AQ是⊙O的切线,然后由切线的性质,可得OQ⊥AQ,又由∠QAP=α,地球半径为R,即可求得OA的长,继而求得航天飞船距离地球表面的最近距离AP的值;(2)在直角△OAQ中,可求出∠O的度数,再利用弧长公式计算即可.【详解】解:(1)由题意,从A处观测到地球上的最远点Q,∴AQ是⊙O的切线,切点为Q,连接OQ,则OQ垂直于AQ,如图,则在直角△OAQ中有=sinα,即AP=﹣R;(2)在直角△OAQ中,则∠O=90°﹣α,由弧长公式得的长=.【点睛】本题主要考查了切线的性质与解直角三角形的应用,掌握切线的性质,解直角三角形是解题的关键.20、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求出二次函数解析式,再令,求得对应的值,则可得点的坐标.【详解】解:∵二次函数的顶点坐标为∴设其解析式为:.∵函数经过点,∴,∴,∴.令得:∴点的坐标为:.【点睛】此题考查的是求二次函数的解析式和根据解析式求点的坐标,掌握二次函数的顶点式是解决此题的关键.21、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)当=4时,△PBC的面积最大,最大面积是1.【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,在令其y值为0,解一元二次方程即可求出A和B的坐标;
(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为(,),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(,),利用面积公式得出关于x的二次函数,从而求得其最值.【详解】(1)∵抛物线的对称轴是直线,∴,解得,∴抛物线的解析式为:,当时,即,解之得:,,∴点A的坐标为(-2,0),点B的坐标为(8,0),故答案为:,点A的坐标为(-2,0),点B的坐标为(8,0);(2)当时,∴点C的坐标为(0,4)设直线BC的解析式为,将点B(8,0)和点C(0,4)的坐标代入得:,解之得:,∴直线BC的解析式为,假设存在,设点P的坐标为(,),过点P作PD∥轴,交直线BC于点D,交轴于点E,则点D的坐标为(,),如图所示,PD=-()=∴S△PBC=S△PDC+S△PDB====∵-1<0∴当=4时,△PBC的面积最大,最大面积是1.【点睛】本题属于二次函数综合题,综合考查了待定系数法求解析式,一次函数的应用,三角形的面积,解题的关键是学会构建二次函数解决最值问题.22、(1)y=﹣,y=﹣x﹣1;(2)【分析】(1)过点A作AE⊥x轴于点E,通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可,再由点B在反比例函数图象上可求出点B的坐标,由点A、B的坐标利用待定系数法求出直线AB的解析式;(2)令一次函数解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【详解】解:(1)过点作轴于点,则.在中,,,,,点的坐标为.点在反比例函数的图象上,,解得:.反比例函数解析式为.点在反比例函数的图象上,,解得:,点的坐标为.将点、点代入中得:,解得:,一次函数解析式为.(2)令一次函数中,则,解得:,即点的坐标为..【点睛】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,根据点的坐标利用待定系数法求出函数解析式是关键.23、(1);(2);(3)101.2,1.【分析】分两段,根据题意,用待定系数法求解即可;先用含m,n的式子表示出y来,再代入即可;分别对(2)中的函数化为顶点式,再依次求出各种情况下的最大值,最后值最大的即为所求.【详解】(1)当时,设,由图知可知,解得∴同理得,当时,∴销售量与第天之间的函数关系式:(2)∵∴整理得,(3)当时,∵的对称轴∴此时,在对称轴的右侧随的增大而增大∴时,取最大值,则当时∵的对称轴是∴在时,取得最大值,此时当时∵的对称轴为∴此时,在对称轴的左侧随的增大而减小∴时,取最大值,的最大值是综上,文旦销售第1天时,日销售利润最大,最大值是101.2【点睛】本题考查了一次函数和二次函数的实际应用,注意分情况进行讨论.24、(1)证明见解析;(2)另一根为4,为.【分析】(1)判断是否大于0即可得出答案;(2)将x=1代入方程求解即可得出答案.【详解】解:(1)∵∴∵∴故此方程必有两个不相等的实数根;(2)把代入原方程,∴,即,,∴,故方程的另一根为4,为.【点睛】本题考查的是一元二次方程,难度适中,需要熟练掌握一元二次方程根与系数的关系.25、(1)2;(2)见详解;(3)1560【分析】(1)先求出去年落在48<t≤72内的数据个数,从而根据“今年落在24<t≤48内的“声呐鲟”比去年多1尾”得到今年落在48<t≤72内的数据个数,继而根据各时间段的数据和为20求出24<t≤48内的数据个数,从而补全图形,最后根据中位数的概念求解可得;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- plc的考试试题及答案
- 领导科学中的创新思维能力考题及答案
- 移动学习的实施方案与挑战
- 餐饮企业员工激励机制设计合同
- 成都市离婚协议书起草与心理辅导范本
- 源代码审查在软件测试中的重要性试题及答案
- lng加气站考试试题及答案
- java面试题库及答案下载
- 2025办公用品采购合同范本
- 纺织服装产业基地项目经济效益和社会效益
- 折扣零售业态在社区商业中的布局策略与盈利模式研究报告
- 医院护工面试题及答案
- 高校学生资助诚信教育主题活动
- 上海市徐汇区2025届七年级生物第二学期期末教学质量检测试题含解析
- 河南中考:历史必背知识点
- 脐橙代销销售合同协议
- 2025年广东省广州市南沙区中考一模语文试题及答案
- 肠易激综合征中西医结合诊疗专家共识(2025)解读课件
- 水利工程课件
- 灸法完整版本
- 建筑概论考试试题及答案
评论
0/150
提交评论