2024届广东省茂名市九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
2024届广东省茂名市九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
2024届广东省茂名市九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
2024届广东省茂名市九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
2024届广东省茂名市九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省茂名市九年级数学第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是()A.v=5t B.v=t+5 C.v= D.v=2.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠13.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于()A. B. C. D.4.菱形具有而矩形不具有的性质是()A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直5.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个6.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根7.如图,点,,,,都在上,且的度数为,则等于()A. B. C. D.8.对于非零实数,规定,若,则的值为A. B. C. D.9.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1 B.0 C.1 D.210.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.二、填空题(每小题3分,共24分)11.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.12.如图所示,在宽为,长为的矩形耕地上,修筑同样宽的三条路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为,道路的宽为_______13.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.14.函数中,自变量的取值范围是_____.15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.16.如图,建筑物BC上有一旗杆AB,从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为__________m.(结果取整数.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)17.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为,则可列方程为____.18.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.三、解答题(共66分)19.(10分)同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.20.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外无其它差别,其中红球有个,若从中随机摸出一个,这个球是白球的概率为.(1)求袋子中白球的个数;(2)随机摸出一个球后,不放回,再随机摸出一个球,请结合树状图或列表求两次都摸到相同颜色的小球的概率.21.(6分)已知:、是圆中的两条弦,连接交于点,点在上,连接,.(1)如图1,若,求证:弧弧;(2)如图2,连接,若,求证:;(3)如图3,在第(2)问的条件下,延长交圆于点,点在上,连接,若,,,求线段的长.22.(8分)如图,直线与轴交于点(),与轴交于点,抛物线()经过,两点,为线段上一点,过点作轴交抛物线于点.(1)当时,①求抛物线的关系式;②设点的横坐标为,用含的代数式表示的长,并求当为何值时,?(2)若长的最大值为16,试讨论关于的一元二次方程的解的个数与的取值范围的关系.23.(8分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.⑴求证:BE是⊙O的切线;⑵若BC=,AC=5,求圆的直径AD的长.24.(8分)已知正比例函数y=kx与比例函数的图象都过点A(m,1).求:(1)正比例函数的表达式;(2)正比例函数图象与反比例数图象的另一个交点的坐标.25.(10分)解不等式组,并把解集在数轴上表示出来:26.(10分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据速度=路程÷时间即可写出时间t与速度(平均速度)v之间的函数关系式.【详解】∵速度=路程÷时间,∴v=.故选C.【点睛】此题主要考查反比例函数的定义,解题的关键是熟知速度路程的公式.2、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.3、C【分析】利用∠ABC的正切函数求解即可.【详解】解:∵AC⊥CD,,,∴小河宽AC=BC·tan∠ABC=100tan50°(m).​故选C.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.4、D【分析】根据菱形和矩形都是平行四边形,都具备平行四边形性质,再结合菱形及矩形的性质,对各选项进行判断即可.【详解】解:因为菱形和矩形都是平行四边形,都具备平行四边形性质,即对边平行而且相等,对角相等,对角线互相平分.、对边平行且相等是菱形矩形都具有的性质,故此选项错误;、对角相等是菱形矩形都具有的性质,故此选项错误;、对角线互相平分是菱形矩形都具有的性质,故此选项错误;、对角线互相垂直是菱形具有而矩形不具有的性质,故此选项正确;故选:D.【点睛】本题考查了平行四边形、矩形及菱形的性质,属于基础知识考查题,同学们需要掌握常见几种特殊图形的性质及特点.5、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【点睛】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.6、A【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:,,,,,方程由两个不相等的实数根.故选A.【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7、D【分析】连接AB、DE,先求得∠ABE=∠ADE=25°,根据圆内接四边形的性质得出∠ABE+∠EBC+∠ADC=180°,即可求得∠CBE+∠ADC=155°.【详解】解:如图所示连接AB、DE,则∠ABE=∠ADE∵=50°∴∠ABE=∠ADE=25°∵点,,,都在上∴∠ADC+∠ABC=180°∴∠ABE+∠EBC+∠ADC=180°∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°故选:D.【点睛】本题主要考查的是圆周角定理和圆内接四边形的性质,作出辅助线构建内接四边形是解题的关键.8、A【解析】试题分析:∵,∴.又∵,∴.解这个分式方程并检验,得.故选A.9、C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x=2代入方程式即可求解.【详解】解:将x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故选C.【点睛】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.10、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.二、填空题(每小题3分,共24分)11、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.12、1【分析】设道路宽为x米,根据耕地的面积-道路的面积=试验田的面积,即可得出关于x的一元二次方程,解之即可得出结论.【详解】解:设道路宽为x米,

根据耕地的面积-道路的面积=试验田的面积得:,

解得:x1=1,x2=1.

∵1>20,

∴x=1舍去.

答:道路宽为1米.【点睛】本题考查了一元二次方程的应用,根据耕地的面积-道路的面积=试验田的面积,列出关于x的一元二次方程是解题的关键.13、1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=2/3解得:x=1.∴黄球的个数为1.14、【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.15、24米.【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.16、1【分析】根据正切的定义分别求出AC、BC,结合图形计算即可.【详解】解:由题意,CD=10,∠BDC=45°,∠ADC=51°,在Rt△BCD中,tan∠BDC=,则BC=CD•tan45°=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.11=11.1,∴AB=AC-BC=1.1≈1(m),故答案为:1.【点睛】本题考查的是解直角三角形的应用——仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17、【分析】根据题意,找出题目中的等量关系,列出一元二次方程即可.【详解】解:根据题意,设旅游产业投资的年平均增长率为,则;故答案为:.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是熟练掌握增长率问题的等量关系,正确列出一元二次方程.18、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题,实质上是顶点的平移,原抛物线y=顶点坐标为(O,O),向左平移2个单位,顶点坐标为(-2,0),根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.三、解答题(共66分)19、(1)详见解析;(2)1.【分析】(1)先证明四边形AECF是平行四边形,再证明AF=CE即可.(2)在RT△ABE中利用勾股定理求出BE、AE,再根据S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC求出面积即可.【详解】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=1cm2.【点睛】本题考查菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定方法是解决问题的关键,学会转化的思想,把问题转化为方程解决属于中考常考题型.20、(1)袋子中白球有4个;(2)【分析】(1)设白球有

x

个,利用概率公式得方程,解方程即可求解;(2)画树状图展示所有30种等可能的结果数,再找出两次摸到颜色相同的小球的结果数,然后根据概率公式求解.【详解】(1)设袋中白球有x个,由题意得:,解之,得:,经检验,是原方程的解,故袋子中白球有4个;(2)设红球为A、B,白球为,列举出两次摸出小球的所有可能情况有:共有30种等可能的结果,其中,两次摸到相同颜色的小球有14种,故两次摸到相同颜色的小球的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.21、(1)见解析;(2)见解析;(3)【分析】(1)通过角度之间的关系,求得,得证,即可证明;(2)通过证明≌,求得,,可得为等边三角形,可得,,即可证明;(3)延长交于点,延长到点,使,连接,,设,先证明≌,可得,设,解得,,过点作,在中,解得,故在中,,解得,即可求出线段BG的长度.【详解】(1)证明:∵,∴∵∴∵∴∴∴(2)证明:∵,∵∴在和中∵,,∴≌∴,∴∴为等边三角形∵,∴(3)证明:延长交于点,延长到点,使,连接,设,∴∵,∴∴∵∴在和中∵,,∴≌∴∵∴∴设,∴,,在中,,,,解得,过点作,在中,∵,∴,,在中,,【点睛】本题考查了三角形和圆的综合问题,掌握圆心角定理、全等三角形的性质以及判定定理、勾股定理、锐角三角函数是解题的关键.22、(1)①;②;当x=1或x=4时,;(1)当时,一元二次方程有一个解;当>2时,一元二次方程无解;当<2时,一元二次方程有两个解.【分析】(1)①首先根据题意得出点A、B的坐标,然后代入抛物线解析式即可得出其表达式;②首先由点A的坐标得出直线解析式,然后得出点P、Q坐标,根据平行构建方程,即可得解;(1)首先得出,然后由PQ的最大值得出最大值,再利用二次函数图象的性质分类讨论一元二次方程的解即可.【详解】(1)①∵m=5,∴点A的坐标为(5,0).将x=0代入,得y=1.∴点B的坐标为(0,1).将A(5,0),B(0,1)代入,得解得∴抛物线的表达式为.②将A(5,0)代入,解得:.∴一次函数的表达为.∴点P的坐标为,又∵PQ∥y轴,∴点Q的坐标为∴∵,∴解得:,∴当x=1或x=4时,;(1)由题意知:设,∴为的二次函数,又<,∵长的最大值为2,∴最大值为2.∴由二次函数的图象性质可知当时,一元二次方程有一个解;当>2时,一元二次方程无解;当<2时,一元二次方程有两个解..【点睛】此题主要考查一次函数与二次函数的综合运用,熟练掌握,即可解题.23、(1)详见解析;(2)1【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;

(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD=90°,又∠EBD=∠CAB,∠CAB=∠OB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论