2024届福建厦门双十中学数学九年级第一学期期末教学质量检测模拟试题含解析_第1页
2024届福建厦门双十中学数学九年级第一学期期末教学质量检测模拟试题含解析_第2页
2024届福建厦门双十中学数学九年级第一学期期末教学质量检测模拟试题含解析_第3页
2024届福建厦门双十中学数学九年级第一学期期末教学质量检测模拟试题含解析_第4页
2024届福建厦门双十中学数学九年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建厦门双十中学数学九年级第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则等于()A.3 B.4 C.5 D.62.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.3.下列几何体中,主视图是三角形的是()A. B. C. D.4.函数与抛物线的图象可能是().A. B. C. D.5.方程组的解的个数为()A.1 B.2 C.3 D.46.如图,在扇形中,∠,,则阴影部分的面积是()A. B.C. D.7.已知二次函数(是实数),当自变量任取,时,分别与之对应的函数值,满足,则,应满足的关系式是()A. B.C. D.8.一元二次方程中的常数项是()A.-5 B.5 C.-6 D.19.如图所示的几何体的俯视图是()A. B. C. D.10.若关于的方程有两个不相等的实数根,则的取值范围是()A. B. C. D.11.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处12.已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是_____.14.计算:=______.15.把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为______.16.将矩形纸片ABCD按如下步骤进行操作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是_____.17.将抛物线y=x2向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是________.18.已知,则的值是_______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,矩形的顶点,,的坐标分别,,,以为顶点的抛物线过点.动点从点出发,以每秒个单位的速度沿线段向点匀速运动,过点作轴,交对角线于点.设点运动的时间为(秒).(1)求抛物线的解析式;(2)若分的面积为的两部分,求的值;(3)若动点从出发的同时,点从出发,以每秒1个单位的速度沿线段向点匀速运动,点为线段上一点.若以,,,为顶点的四边形为菱形,求的值.20.(8分)已知,如图1,在中,对角线,,,如图2,点从点出发,沿方向匀速运动,速度为,过点作交于点;将沿对角线剪开,从图1的位置与点同时出发,沿射线方向匀速运动,速度为,当点停止运动时,也停止运动.设运动时间为,解答下列问题:(1)当为何值时,点在线段的垂直平分线上?(2)设四边形的面积为,试确定与的函数关系式;(3)当为何值时,有最大值?(4)连接,试求当平分时,四边形与四边形面积之比.21.(8分)如图,抛物线的图象与正比例函数的图象交于点,与轴交于点.(1)求抛物线的解析式;(2)将绕点逆时针旋转得到,该抛物线对称轴上是否存在点,使有最小值?若存在,请求出点的坐标;若不存在,请说明理由.22.(10分)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温(℃)与开机后用时()成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温(℃)与时间()的关系如图所示:(1)分别写出水温上升和下降阶段与之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?23.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?24.(10分)如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,求正方形ABCD的面积.25.(12分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.26.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】∵已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,∴点A平移后的点坐标为(2,3),∵点A、B恰好同时落在反比例函数(x>0)的图象上,∴,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.2、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.3、C【分析】主视图是从正面看所得到的图形,据此判断即可.【详解】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.【点睛】此题主要考查了几何体的三视图,解此题的关键是熟练掌握几何体的主视图.4、C【分析】一次函数和二次函数与y轴交点坐标都是(0,1),然后再对a分a>0和a<0讨论即可.【详解】解:由题意知:与抛物线与y轴的交点坐标均是(0,1),故排除选项A;当a>0时,一次函数经过第一、二、三象限,二次函数开口向上,故其图像有可能为选项C所示,但不可能为选项B所示;当a<0时,一次函数经过第一、二、四象限,二次函数开口向下,不可能为为选项D所示;故选:C.【点睛】本题考查了一次函数与二次函数的图像关系,熟练掌握函数的图像与系数之间的关系是解决本类题的关键.5、A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:,无解;②当x>0,y<0时,方程组变形得:,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:,此时方程组的解为;④当x<0,y<0时,方程组变形得:,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.6、D【分析】利用阴影部分的面积等于扇形面积减去的面积即可求解.【详解】=故选D【点睛】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键.7、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】抛物线的对称轴为直线x=-=3,∵y1>y2,∴点(x1,y1)比点(x2,y2)到直线x=3的距离要大,∴|x1-3|>|x2-3|.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8、C【分析】将一元二次方程化成一般形式,即可得到常数项.【详解】解:∵∴∴常数项为-6故选C.【点睛】本题主要考查了一元二次方程的一般形式,准确的化出一元二次方程的一般形式是解决本题的关键.9、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.10、D【分析】利用一元二次方程的根的判别式列出不等式即可求出k的取值范围.【详解】解:由题意得=(2k+1)2-4(k2-1)=4k+5>0解得:k>-故选D【点睛】此题主要考查了一元二次方程的根的判别式,熟记根的判别式是解题的关键.11、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.

故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.12、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解.【详解】解:∵菱形的边长是20cm,∴菱形的边长=20÷4=5cm,∵菱形的两条对角线长的比是,∴设菱形的两对角线分别为8x,6x,∵菱形的对角线互相平分,∴对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,∴菱形的两对角线分别为8cm,6cm,∴菱形的面积=cm2,故选:D.【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半.二、填空题(每题4分,共24分)13、【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【详解】解:点M,N分别是AB,BC的中点,,当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,,,,,故答案为:.【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN的值最大问题转化为AC的最大值问题,难度不大.14、【分析】直接利用平面向量的加减运算法则求解即可求得,注意去括号时符号的变化.【详解】解:==故答案为:.【点睛】此题考查了平面向量的运算.此题难度不大,注意掌握运算法则是解此题的关键.15、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张∴概率为故本题答案为:【点睛】本题考查了随机事件的概率16、【分析】根据折叠的性质得到BE=AB,根据矩形的性质得到AB=CD,△BOE∽△DOC,再根据相似三角形的性质即可求解.【详解】解:由折叠的性质得到BE=AB,∵四边形ABCD是矩形,∴AB=CD,△BOE∽△DOC,∴△BOE与△DOC的相似比是,∴点O到边AB的距离与点O到边CD的距离的比值是.故答案为:.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题.17、y=(x+4)2-2【解析】∵y=x2向左平移4个单位后,再向下平移2个单位.∴y=.故此时抛物线的解析式是y=.故答案为y=(x+4)2-2.点睛:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.18、【分析】由可设a=k,b=3k,代入中即可.【详解】解:∵,∴设a=k,b=3k,代入中,==.故答案为:.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.三、解答题(共78分)19、(1);(2)的值为或;(3)的值为或.【分析】(1)运用待定系数法求解;(2)根据已知,证,,可得或;(3)分两种情况:当为菱形的对角线时:由点,的横坐标均为,可得.求直线的表达式为,再求N的纵坐标,得,根据菱形性质得,可得.在中,得.同理,当为菱形的边时:由菱形性质可得,.由于,所以.结合三角函数可得.【详解】解:(1)因为,矩形的顶点,,的坐标分别,,,所以A的坐标是(1,4),可设函数解析式为:把代入可得,a=-1所以,即.(2)因为PE∥CD所以可得.由分的面积为的两部分,可得所以,解得.所以,的值为=(秒).或,解得.所以,的值为.综上所述,的值为或.(3)当为菱形的对角线时:由点,的横坐标均为,可得.设直线AC的解析式为,把A,C的坐标分别代入可得解得所以直线的表达式为.将点的横坐标代入上式,得.即.由菱形可得,.可得.在中,得.解得,,t2=4(舍).当为菱形的边时:由菱形性质可得,.由于,所以.因为.由,得.解得,,综上所述,的值为或.【点睛】考核知识点:相似三角形,二次函数,三角函数.分类讨论,数形结合,运用菱形性质和相似三角形性质或三角函数定义构造方程,再求解是解题关键.20、(1),(2)四边形AHGD(3)当四边形的面积最大,最大面积为(4)【分析】(1)由题意得:利用垂直平分线的性质得到:列方程求解即可,(2)四边形AHGD分别求出各图形的面积,代入计算即可得到答案,(3)利用(2)中解析式,结合二次函数的性质求最大面积即可,(4)连接过作于从而求解此时时间,分别求解四边形EGFD和四边形AHGE的面积,即可得到答案.【详解】解:(1)如图,由题意得:及平移的性质,点在线段的垂直平分线上,当时,点在线段的垂直平分线上.(2),,,又点在上,四边形AHGD()(3)四边形AHGD且抛物线的对称轴是:时,随的增大而增大,当四边形的面积最大,最大面积为:(4)如图,连接过作于平分此时:由四边形EGFD四边形ABGE四边形AHGE.四边形EGFD:四边形AHGE【点睛】本题考查的是平行四边形中几何动态问题,考查了线段的垂直平分线的性质,图形面积的计算,二次函数的性质,掌握以上知识是解题的关键.21、(1);(2)存在,.【分析】(1)将点A的坐标代入直线y=x解得:k=3,则点A(3,3),将点A、B的坐标代入抛物线表达式,即可求解;(2)将△ABO绕点O逆时针旋转90°得到△B1A1O,则点A1、B1的坐标分别为:(−3,3)、(0,2);则抛物线的对称轴为:x=1,则点C(2,2),即可求解.【详解】(1)将点A的坐标代入直线y=x,解得:k=3,∴点A(3,3),.∵二次函数的图象过点,,∴解得,∴抛物线的解析式为.(2)存在.∵,,绕点逆时针旋转得到,∴,.∵抛物线的对称轴为,∴点关于直线的对称点为.设直线的解析式为,∴解得,∴.当时,,∴.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.22、(1)与的函数关系式为:,与的函数关系式每分钟重复出现一次;(2)她最多需要等待分钟;【解析】(1)分情况当,当时,用待定系数法求解;(2)将代入,得,将代入,得,可得结果.【详解】(1)由题意可得,,当时,设关于的函数关系式为:,,得,即当时,关于的函数关系式为,当时,设,,得,即当时,关于的函数关系式为,当时,,∴与的函数关系式为:,与的函数关系式每分钟重复出现一次;(2)将代入,得,将代入,得,∵,∴怡萱同学想喝高于50℃的水,她最多需要等待分钟;【点睛】考核知识点:一次函数和反比例函数的综合运用.根据实际结合图象分析问题是关键.23、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24、1【分析】根据正方形的性质得到AD=BC,AD∥BC,根据相似三角形的性质得到=2,于是得到答案.【详解】解:∵四边形ABCD是正方形,∴AD=BC,AD∥BC,∴△ADE∽△EBF,∴=,∵E是BC边的中点,∴BC=AD=2BE,∴=2,∵△DEF的面积是1,∴△DBE的面积为,∵E是BC边的中点,∴S△BCD=2S△BDE=3,∴正方形ABCD的面积=2S△BCD=2×3=1.【点睛】本题考查了相似三角形的判定和性质,正方形的性质,三角形的面积的计算,正确的识别图形是解题的关键.25、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得,,再根据三角形内角和性质,得;结合AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论