2024届安徽省六安市七校联考数学九年级第一学期期末监测模拟试题含解析_第1页
2024届安徽省六安市七校联考数学九年级第一学期期末监测模拟试题含解析_第2页
2024届安徽省六安市七校联考数学九年级第一学期期末监测模拟试题含解析_第3页
2024届安徽省六安市七校联考数学九年级第一学期期末监测模拟试题含解析_第4页
2024届安徽省六安市七校联考数学九年级第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省六安市七校联考数学九年级第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.点P(6,-8)关于原点的对称点的坐标为()A.(-6,8) B.(–6,-8) C.(8,-6) D.(–8,-6)2.反比例函数,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大3.下列四个几何体中,左视图为圆的是()A. B. C. D.4.下列方程中,是一元二次方程的是()A. B. C. D.5.若关于x的一元一次不等式组的解集是xa,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.66.已知方程的两根为,则的值为()A.-1 B.1 C.2 D.07.二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为()A. B. C. D.8.如图,已知点E(﹣4,2),点F(﹣1,﹣1),以O为位似中心,把△EFO放大为原来的2倍,则E点的对应点坐标为()A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4)C.(2,﹣1) D.(8,﹣4)9.已知x=-1是方程2x2+ax-5=0的一个根,则a的值为()A.-3 B.-4 C.3 D.710.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=(k≠0)经过点C,则k的值为()A.12 B.15 C.20 D.32二、填空题(每小题3分,共24分)11.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的P点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为________米.12.某化肥厂一月份生产化肥500吨,从二月份起,由于改进操作技术,使得第一季度共生产化肥1750吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可列方程为_______.13.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.14.如图,与关于点成中心对称,若,则______.15.已知二次函数y=ax2-bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是_________;若a+b的值为非零整数,则b的值为_________.16.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.17.若两个相似三角形的周长比是,则对应中线的比是________.18.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.三、解答题(共66分)19.(10分)为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”这两项的概率.20.(6分)已知关于的一元二次方程的两实数根,满足,求的取值范围.21.(6分)平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.(1)已知抛物线.①在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是;②如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.22.(8分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)23.(8分)如图,矩形中,.为边上一动点(不与重合),过点作交直线于.(1)求证:;(2)当为中点时,恰好为的中点,求的值.24.(8分)定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形中,,求与的度数之和;(2)如图2,为锐角的外心,过点的直线交,于点,,,求证:四边形是对半四边形;(3)如图3,在中,,分别是,上一点,,,为的中点,,当为对半四边形的对半线时,求的长.25.(10分)小明和同学们在数学实践活动课中测量学校旗杆的高度.如图,已知他们小组站在教学楼的四楼,用测角仪看旗杆顶部的仰角为,看旗杆底部的俯角是为,教学楼与旗杆的水平距离是,旗杆有多高(结果保留整数)?(已知,,,,)26.(10分)(1)解方程:(2)已知点P(a+b,-1)与点Q(-5,a-b)关于原点对称,求a,b的值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接选出答案.【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标是(-6,8).故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反.2、D【解析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.【点睛】考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.3、A【分析】根据三视图的法则可得出答案.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析较容易题.失分原因是不会判断常见几何体的三视图.4、D【解析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【详解】解:A、是一元一次方程,故A不符合题意;B、是二元二次方程,故B不符合题意;C、是分式方程,故C不符合题意;D、是一元二次方程,故D符合题意;故选择:D.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.5、B【解析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【详解】解:由不等式组,解得:∵解集是x≤a,∴a<5;由关于的分式方程得得2y-a+y-4=y-1又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.6、D【分析】先根据一元二次方程的解的定义得到a2-a-1=1,即a2-a=1,则a2-2a-b可化简为a2-a-a-b,再根据根与系数的关系得a+b=1,ab=-1,然后利用整体代入的方法计算.【详解】解:∵a是方程的实数根,

∴a2-a-1=1,

∴a2-a=1,

∴a2-2a-b=a2-a-a-b=(a2-a)-(a+b),

∵a、b是方程的两个实数根,

∴a+b=1,

∴a2-2a-b=1-1=1.

故选D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=,x1⋅x2=.7、B【解析】∵二次函数图象开口向上,∴a>1,∵对称轴为直线,∴b<1.∵与y轴的正半轴相交,∴c>1.∴的图象经过第一、三、四象限;反比例函数图象在第一、三象限,只有B选项图象符合.故选B.8、B【分析】E(﹣4,1)以O为位似中心,按比例尺1:1,把△EFO放大,则点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.【详解】解:根据题意可知,点E的对应点E′的坐标是E(﹣4,1)的坐标同时乘以1或﹣1.所以点E′的坐标为(8,﹣4)或(﹣8,4).故选:B.【点睛】本题主要考查根据位似比求对应点的坐标,分情况讨论是解题的关键.9、A【解析】把x=-1代入方程计算即可求出a的值.【详解】解:把x=-1代入方程得:2-a-5=0,

解得:a=-1.

故选A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入得,k=8×4=32,故选:D.【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.二、填空题(每小题3分,共24分)11、22.5【解析】根据题意画出图形,构造出△PCD∽△PAB,利用相似三角形的性质解题.解:过P作PF⊥AB,交CD于E,交AB于F,如图所示设河宽为x米.∵AB∥CD,∴∠PDC=∠PBF,∠PCD=∠PAB,∴△PDC∽△PBA,∴,∴,依题意CD=20米,AB=50米,∴,解得:x=22.5(米).答:河的宽度为22.5米.12、500+500(1+x)+500(1+x)2=1【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为x,则二月份的产量是500(1+x)吨,三月份的产量是500(1+x)(1+x)=500(1+x)2,再根据第一季度共生产钢铁1吨列方程即可.【详解】依题意得二月份的产量是500(1+x),三月份的产量是500(1+x)(1+x)=500(1+x)2,∴500+500(1+x)+500(1+x)2=1.故答案为:500+500(1+x)+500(1+x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,能够根据增长率分别表示出各月的产量,这里注意已知的是一季度的产量,即三个月的产量之和.13、或1.【解析】当△PQB为等腰三角形时,有两种情况,需要分类讨论:①当点P在线段AB上时,如图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时,如图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.【详解】解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB为钝角,∴当△PQB为等腰三角形时,当点P在线段AB上时,如题图1所示:∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴即解得:∴当点P在线段AB的延长线上时,如题图2所示:∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2×3=1.综上所述,当△PQB为等腰三角形时,AP的长为或1.故答案为或1.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14、【分析】由题意根据中心对称的定义可得AB=DE,从而即可求值.【详解】解:与△DEC关于点成中心对称,.【点睛】本题主要考查了中心对称的定义,解题的关键是熟记中心对称的定义即把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.15、【分析】根据题意可得a<0,再由可以得到b>0,把(1,0)函数得a−b+2=0,导出b和a的关系,从而解出a的范围,再根据a+b的值为非零整数的限制条件,从而得到a,b的值.【详解】依题意知a<0,,a−b+2=0,故b>0,且b=a+2,a=b−2,a+b=a+a+2=2a+2,∴a+2>0,∴−2<a<0,∴−2<2a+2<2,∵a+b的值为非零实数,∴a+b的值为−1,1,∴2a+2=−1或2a+2=1,或,∵b=a+2,或16、30°【解析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.17、4:9【分析】相似三角形的面积之比等于相似比的平方.【详解】解:两个相似三角形的周长比是,∴两个相似三角形的相似比是,∴两个相似三角形对应中线的比是,故答案为.18、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.三、解答题(共66分)19、(1)28.8;(2)【分析】(1)用喜欢声乐的人数除以它所占百分比即可得到调查的总人数,用总人数分别减去喜欢舞蹈、乐器、和其它的人数得到喜欢戏曲的人数,即可得出答案;(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①舞蹈、③声乐”两项活动的结果数,然后根据概率公式计算.【详解】(1)抽查的人数=8÷16%=50(名);喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为360°×=28.8°;故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①舞蹈、③声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率==.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.20、【分析】根据根与系数的关系建立关于a的不等式,再结合即可求出a的取值范围.【详解】解:依题意得,,∵,∴,解得,又由,解得,∴的取值范围为.【点睛】本题考查一元二次方程根与系数的关系,熟记两根之和与两根之积的公式是解题的关键,还需要注意公式使用的前提是.21、(1)①A,C.②;(2)或.【分析】(1)①分别将A,B,C三个点的横坐标代入抛物线的解析式中,然后比较求出的函数值与各自点的纵坐标,最后依据上位点的定义判断即可得出答案;②找到直线与抛物线的两个交点,即可确定点的横坐标的取值范围(2)当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求,数形结合求出临界点时圆心的横坐标,即可得出答案.【详解】解:(1)①当时,,所以A点是抛物线的上位点;当时,,所以B点不是抛物线的上位点;当时,,所以C点是抛物线的上位点;故答案为,.②∵点是直线的图上点,∴点在上.又∵点是的上位点,∴点在与的交点,之间运动.∵∴∴点(,),(,).∴.(2)如图,当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求.将沿直线翻折后的直线的解析式为当时,,∴A(-3,0),OA=3当时,∴C(0,3),OC=3∴∵∴∴∵A(-3,0)∴同理可得∴线段EF上同时存在图象的上位点,图上点和下位点,圆心的横坐标的取值范围为或.【点睛】本题主要考查二次函数与一次函数的综合,掌握上位点,图上点和下位点的概念是解题的关键.22、(1)经过第一次传球后,篮球落在丙的手中的概率为;(2)篮球传到乙的手中的概率为.【分析】(1)根据概率公式即可得出答案;

(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为;故答案为;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23、(1)见解析;(2)的值为.【分析】(1)根据矩形的性质可得,根据余角的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论