




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年邢台市重点中学数学九年级第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8 B.6 C.4 D.52.如图所示的几何体是由六个小正方体组合而成的,它的俯视图是()A. B. C. D.3.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根 B.只有一个实数根C.没有实数根 D.有两个不相等的实数根4.如图,与是位似图形,相似比为,已知,则的长()A. B. C. D.5.有5个完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一个卡片,其数字是奇数的概率为()A. B. C. D.6.抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1) B.(﹣1,1) C.(1,3) D.(﹣1,3)7.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=55°,则∠BCD的度数为()A.25° B.30° C.35° D.40°8.在Rt△ABC中,∠C=900,∠B=2∠A,则cosB等于()A. B. C. D.9.如图,AB是⊙O的弦,∠BAC=30°,BC=2,则⊙O的直径等于()A.2 B.3 C.4 D.610.如图,中,点,分别是边,上的点,,点是边上的一点,连接交线段于点,且,,,则S四边形BCED()A. B. C. D.11.如图,在□ABCD中,∠B=60°,AB=4,对角线AC⊥AB,则□ABCD的面积为A.6 B.12 C.12 D.1612.设m是方程的一个较大的根,n是方程的一个较小的根,则的值是()A. B. C.1 D.2二、填空题(每题4分,共24分)13.函数中,自变量的取值范围是_____.14.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.15.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.16.b和2的比例中项是4,则b=__.17.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有________.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.18.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有_____个.三、解答题(共78分)19.(8分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.(1)求证:△ADC∽△APD;(2)求△APD的面积;(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断PMCN的值是否随着α的变化而变化?如果不变,请求出PM20.(8分)如图,在坐标系中,抛物线经过点和,与轴交于点.直线.抛物线的解析式为.直线的解析式为;若直线与抛物线只有一个公共点,求直线的解析式;设抛物线的顶点关于轴的对称点为,点是抛物线对称轴上一动点,如果直线与抛物线在轴上方的部分形成了封闭图形(记为图形).请结合函数的图象,直接写出点的纵坐标的取值范围.21.(8分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.(1)求证:PQ∥AC;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.22.(10分)如图,一次函数的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.根据以往所学的函数知识以及本题的条件,你能提出求解什么问题?并解决这些问题(至少三个问题).23.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:≈1.7,≈1.4)24.(10分)一个不透明的布袋中装有4个只有颜色不同的球,其中1个黄球、1个蓝球、2个红球.(1)任意摸出1个球,记下颜色后不放回,再任意摸出1个球.求两次摸出的球恰好都是红球的概率(要求画树状图或列表);(2)现再将n个黄球放入布袋,搅匀后,使任意摸出1个球是黄球的概率为,求n的值.25.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.26.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,若AD=4,则四边形BEGF的面积为_____.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据三角形中位线定理可知EF=DN,求出DN的最大值即可.【详解】解:如图,连结DN,
∵DE=EM,FN=FM,
∴EF=DN,
当点N与点B重合时,DN的值最大即EF最大,
在Rt△ABD中,∵∠A=90°,AD=6,AB=8,
∴,
∴EF的最大值=BD=1.
故选:D.【点睛】本题考查了三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.2、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是两个小正方形,
故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3、C【解析】试题分析:利用根的判别式进行判断.解:∵∴此方程无实数根.故选C.4、B【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【详解】∵△ABC与△DEF是位似图形,相似比为2:3,
∴△ABC∽△DEF,
∴,即,
解得,DE=故选:B.【点睛】本题考查的是位似变换,掌握位似是相似的特殊形式,位似比等于相似比是解题的关键.5、D【分析】让正面的数字是奇数的情况数除以总情况数即为所求的概率.【详解】解:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为;故选D.【点睛】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.6、A【解析】分析:把函数解析式整理成顶点式形式,然后写出顶点坐标即可.详解:∵y=x2-2x+2=(x-1)2+1,∴顶点坐标为(1,1).故选A.点睛:本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.7、C【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠BAD=90°﹣55°=35°,∴∠BCD=∠BAD=35°.故选C.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.8、B【详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故选B【点睛】本题考查三角函数值,熟记特殊角三角函数值是解题关键.9、C【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.10、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形对应成比例可得,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S△ABC=40.5,再减去△ADE的面积即可得到四边形BCED的面积.【详解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四边形BCED=S△ABC-S△ADE=40.5-18=22.5故答案选:B.【点睛】本题考查相似三角形的性质和判定.11、D【分析】利用三角函数的定义求出AC,再求出△ABC的面积,故可得到□ABCD的面积.【详解】∵∠B=60°,AB=4,AC⊥AB,∴AC=ABtan60°=4,∴S△ABC=AB×AC=×4×4=8,∴□ABCD的面积=2S△ABC=16故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知正切的定义及平行四边形的性质.12、C【分析】先解一元二次方程求出m,n即可得出答案.【详解】解方程得或,则,解方程,得或,则,,故选:C.【点睛】本题考查了解一元二次方程,掌握方程解法是解题关键.二、填空题(每题4分,共24分)13、【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.14、1.【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【详解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案为:1.【点睛】此题主要考查了二次根式的化简和性质,正确把握绝对值的性质是解答此题的关键.15、14π【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径1+底面周长×母线长÷1.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=14π.故答案为14π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.16、1.【分析】根据题意,b与2的比例中项为4,也就是b:4=4:2,然后再进一步解答即可.【详解】根据题意可得:B:4=4:2,解得b=1,故答案为:1.【点睛】本题主要考查了比例线段,解题本题的关键是理解两个数的比例中项,然后列出比例式进一步解答.17、④【分析】利用图象信息一一判断即可解决问题.【详解】解:①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;
②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;
③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;
④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t==4.84,故本选项正确;
故答案为:④.【点睛】本题考查动点问题函数图象、解题的关键是读懂图象信息,属于中考常考题型.18、1【分析】根据口袋中有3个白球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:∵通过大量重复摸球试验后发现,摸到红球的频率是0.1,口袋中有3个白球,∵假设有x个红球,∴,解得:x=1,经检验x=1是方程的根,∴口袋中有红球约有1个.故答案为:1.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.三、解答题(共78分)19、(1)见解析;(2)33;(3)不会随着α【解析】(1)先判断出△BCD是等边三角形,进而求出∠ADP=∠ACD,即可得出结论;
(2)求出PH,最后用三角形的面积公式即可得出结论;
(3)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.【详解】(1)证明:∵△ABC是直角三角形,点D是AB的中点,∴AD=BD=CD,∵在△BCD中,BC=BD且∠B=60°,∴△BCD是等边三角形,∴∠BCD=∠BDC=60°,∴∠ACD=90°-∠BCD=30°,∠ADE=180°-∠BDC-∠EDF=30°,在△ADC与△APD中,∠A=∠A,∠ACD=∠ADP,∴△ADC∽△APD.(2)由(1)已得△BCD是等边三角形,∴BD=BC=AD=2,过点P作PH⊥AD于点H,∵∠ADP=30°=90°-∠B=∠A,∴AH=DH=1,tanA=PHAH∴PH=33∴△APD的面积=12AD·PH=(3)PMCN的值不会随着α的变化而变化∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,在△MPD与△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,∴△MPD∽△NCD,∴PMCN由(1)知AD=CD,∴PMCN由(2)可知PD=2AH,∴PD=23∴PMCN∴PMCN的值不会随着α的变化而变化【点睛】属于相似三角形的综合题,考查相似三角形的判定与性质,锐角三角函数,三角形的面积等,综合性比较强,对学生综合能力要求较高.20、(1);(2);(3).【分析】(1)将两点坐标直接代入可求出b,c的值,进而求出抛物线解析式为,得出C的坐标,从而求出直线AC的解析式为y=x+3.(2)设直线的解析式为,直线与抛物线只有一个公共点,方程有两个相等的实数根,再利用根的判别式即可求出b的值.(3)抛物线的顶点坐标为(-1,4),关于y轴的对称点为M(1,4),可确定M在直线AC上,分直线不在直线下方和直线在直线下方两种情况分析即可得解.【详解】解:将A,B坐标代入解析式得出b=-2,c=3,∴抛物线的解析式为:当x=0时,y=3,C的坐标为(0,3),根据A,C坐标可求出直线AC的解析式为y=x+3.直线,设直线的解析式为.直线与抛物线只有一个公共点,方程有两个相等的实数根,,解得.直线的解析式为..解析:如图所示,,抛物线的顶点坐标为.抛物线的顶点关于轴的对称点为.当时,,点在直线上.①当直线不在直线下方时,直线能与抛物线在第二象限的部分形成封闭图形.当时,.当直线与直线重合,即动点落在直线上时,点的坐标为.随着点沿抛物线对称轴向上运动,图形逐渐变小,直至直线与轴平行时,图形消失,此时点与抛物线的顶点重合,动点的坐标是,②当直线在直线下方时,直线不能与抛物线的任何部分形成封闭图形.综上,点的纵坐标的取值范围是.【点睛】本题是一道二次函数与一次函数相结合的综合性题目,根据点坐标求出抛物线与直线的解析式是解题的关键.考查了学生对数据的综合分析能力,数形结合的能力,是一道很好的题目.21、(1)见解析;(2)【分析】(1)由题意可得出,继而可证明△BPQ∽△BAC,从而证明结论;(2)由题意得出QP`⊥AC,分三种情况利用相似三角形的判定及性质讨论计算.【详解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC当0<t≤时,S=t2当<t≤1时:设QP`交AC于点MP`B`交AC于点N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴∴MN=2P`M∴S△P`MN=P`M·MN=P`M2=∴当1<t≤3时设QB`交AC于点H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴∴MH=MQ∴综合上所述:【点睛】本题是一道关于相似的综合题目,难度较大,涉及的知识点有相似三角形的判定及性质、勾股定理、三角形面积公式、旋转的性质等,需要有数形结合的能力以及较强的计算能力.22、见解析【分析】根据反比例函数的性质、一次函数的性质及三角形的面积公式即可求解.【详解】解:①求反比例函数的解析式设反比例函数解析式为将A(-2,1)代入得k=-2所以反比例函数的解析式为②求B点的坐标.(或n的值)将x=1代入得y=-2所以B(1,-2)③求一次函数解析式设一次函数解析式为y=kx+b将A(-2,1)B(1,-2)代入得解得所以一次函数的解析式为y=-x-1④利用图像直接写出当x为何值时一次函数值等于反比例函数值.x=-2或x=1时⑤利用图像直接写出一次函数值大于反比例函数值时,x的取值范围.x<-2或0<x<1⑥利用图像直接写出一次函数值小于反比例函数值时,x的取值范围.-2<x<0或x>1⑦求C点的坐标.将y=0代入y=-x-1得x=-1所以C点的坐标为(-1,0)⑧求D点的坐标.将x=0代入y=-x-1得y=-1所以D点的坐标为(0,-1)⑨求AOB的面积=+=+=【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知反比例函数的性质.23、(1);(2)此校车在AB路段超速,理由见解析.【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.24、(1);(2)1.【解析】(1)先利用树状图展示所有12种等可能的结果数,再找出两次摸出的球恰好都是红球的所占的结果数,然后根据概率公式求解;(2)根据概率公式得到,然后利用比例性质得,求解即可.【详解】解:(1)画树状图为:共有12种等可能的结果,其中两次摸出的球恰好都是红球的占2种,所以两次摸出的球恰好都是红球的概率==;(2)根据题意得,解得n=1.【点睛】本题考查的是概率问题,熟练掌握树状图法和概率公式是解题的关键.25、(1)y=x+3,y=﹣x2﹣2x+3;(2)(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,)【分析】(1)首先由题意根据抛物线的对称性求得点B的坐标,然后利用交点式,求得抛物线的解析式;再利用待定系数法求得直线的解析式;(2)首先利用勾股定理求得BC,PB,PC的长,然后分别从点B为直角顶点、点C为直角顶点、点P为直角顶点去分析求解即可求得答案.【详解】解:(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),抛物线与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论