




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
定向凝固理论与技术开展摘要定向凝固技术是研究凝固理论和新型功能材料的重要手段。从定向凝固技术的演化过程看,是温度梯度不断提高、冷却速度不断加快的过程。简要回忆了定向凝固理论与技术的研究开展历程,分析了各种凝固技术的利弊,展望了凝固理论与技术的开展。关键词:凝固理论,温度梯度,冷却速度,定向凝固理论AbstractDirectionalsolidificationtechnologyisanimportantmeanstostudythesolidificationtheoryandnewfunctionalmaterials.Fromtheevolutionaryprocessofdirectionalsolidificationtechnologyisaprocessofincreasingtemperaturegradientandcoolingvelocity.Itisabriefreviewofthedevelopmentcourseofthedirectionalsolidificationtheoryandtechnology,analysestheadvantagesanddisadvantagesofvarioussolidificationtechnology,andmakesaprospectofsolidificationtheoryandtechnology.Keywords:solidificationtheory,temperaturegradient,temperaturegradient,directionalsolidificationtheory1引言定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到具有特定取向柱状晶的技术。这类材料晶界在高温受力条件下是较薄弱的地方,因为晶界处原子排列不规那么,杂质较多,扩散较快[1]。于是人们利用定向凝固技术让晶粒沿受力方向生长,消除横向晶界,以提高其高温性能。定向凝固技术的最主要应用是生产具有均匀柱状晶组织的铸件,特别是在航空领域生产高温合金的发动机叶片,与普通铸造方法获得的铸件相比,它使叶片的高温强度、抗蠕变和持久性能、热疲劳性能得到大幅度提高。对于磁性材料,应用定向凝固技术,可使柱状晶排列方向与磁化方向一致,大大改善了材料的磁性能。定向凝固技术也是制备单晶的有效方法。定向凝固技术还广泛用于自生复合材料的生产制造,用定向凝固方法得到的自生复合材料消除了其它复合材料制备过程中增强相与基体间界面的影响,使复合材料的性能大大提高。定向凝固技术作为功能晶体的生长和材料强化的重要手段,具有重要的理论意义和实际应用价值。2定向凝固理论根底研究开展2.1定量凝固科学的根底理论研究定向凝固技术的一个重要应用就是用于凝固理论的研究,定向凝固技术的开展直接推动了凝固理论的开展和深入。从Chalmers等的成分过冷到Mullins等的界面稳定动力学理论〔MS理论〕,人们对凝固过程有了更深刻的认识。合金在凝固过程中,其固液界面形态取决于两个参数:Gl/v和Gl·v,即分别为界面前沿液相温度梯度与凝固速度的商与积。前者决定了界面的形态,而后者决定了晶体的显微组织(即枝晶间距或晶粒大小)[2]。MS理论成功地预言了:随着生长速度的提高,固液界面形态将经历从平界面→胞晶→树枝晶→胞晶→带状组织→绝对稳定平界面的转变。近年来对MS理论界面稳定性条件所做的进一步分析说明,MS理论还隐含着另一种绝对性现象,即当温度梯度G超过一临界值时,温度梯度的稳定化效应会完全克服溶质扩散的不稳定化效应,这时无论凝固速度如何,界面总是稳定的,这种绝对稳定性称为高梯度绝对稳定性2定向凝固技术的应用根底理论研究定向凝固技术的应用根底研究,主要涉及定向凝固过程的热场、流动场及溶质场的动态分析、定向组织及其控制以及组织与性能关系等。多年来通过生产实践与定向凝固应用根底研究,总结出得到优质定向组织的四个根本要素:①热流的单向性或发散度;②热流密度或温度梯度;③冷却速度或晶体生长速度;④结晶前沿液态金属中的形核控制[3]。人们围绕上述四个根本要素的控制做了大量的研究工作,随着热流控制技术的开展,凝固技术也不断向前开展。3常规定向凝固技术传统的定向凝固技术主要有发热剂法(EP法)、功率降低法(PD法)、高速凝固法(HRS法)、液态金属冷却法(LMC法)等[4]。3.1发热剂法[5]发热剂法是定向凝固技术开展的起始阶段,是最原始的一种。Versnyder等早在20世纪50年代就应用于试验中。其根本原理是:将铸型预热到一定温度后,迅速放到激冷板上并立即进行浇注,冒口上方覆盖发热剂,激冷板下方喷水冷却,从而在金属液和已凝固金属中建立起一个自下而上的温度梯度,实现定向凝固〔如图1〕。也有采用发热铸型的,铸型不预热,而是将发热材料填充在铸型四周,底部采用喷水冷却。此方法无法调节温度梯度和凝固速度,单向热流条件很难保证,故不适合大型优质铸件的生产。但该方法工艺简单、本钱又低,可应用于小型的定向凝固件生产。图1PD装置示意图3.2功率降低法在20世纪60年代,Versnyder等人提出了功率降低法[6]。在这种工艺过程中,铸型加热感应圈分两段,铸件在凝固过程中不动,在底部采用水冷激冷板。加热时上下两局部感应圈全通电,在模壳内建立起所要求的温度场,注入过热的合金液。然后下部感应圈断电,通过调节输入上部感应圈的功率,在液态金属中形成一个轴向温度梯度。在功率降低法中,热量主要通过已凝固局部及底盘由冷却水带走。这种工艺可到达的温度梯度较小,在10℃/cm左右,制出的合金叶片,其长度受到限制,并且柱状晶之间的平行度差,甚至产生放射状凝固组织。合金的显微组织在不同部位差异较大,目前一般不采用此工艺。3.3高速凝固法高速凝固法[7]是Erickson等于1971年提出的,装置示意图如图2所示。其装置和功率降低法相似,不过多了一个拉锭机构,可使模壳按一定速度向下移动,改善了功率降低法温度梯度在凝固过程中逐渐减小的缺点;另外,在热区底部使用辐射挡板和水冷套,在挡板附近产生较大的温度梯度。这种方法可以加大缩小凝固前沿两相区,局部冷却速度增大,有利于细化组织,提高力学性能。这种方法是借鉴Bridgman晶体生长技术特点而开展起来的,其主要特点是:铸型以一定速度从炉中移出,或者炉子以一定速度移离铸件,并采用空冷方式。这种方法由于防止了炉膛的影响且利用空气冷却,因而所获得柱状间距变小,组织较均匀。由于大大缩小了凝固前沿两相区,局部冷却速度增大,有利于细化组织,提高力学性能。因而,在实际生产中得到了广泛应用。但HRS法是靠辐射换热来冷却的,获得的温度梯度和冷却速度都很有限。图2HRS装置示意图3.4液态金属冷却法〔LMC〕在提高散热能力和增大界面液相温度梯度方面。功率降低法和高速凝固法都受到一定条件的限制,1974年出现了一种新的定向凝固方法——液态金属冷却法[8]是目前工业应用较为广泛的一种定向凝固方法〔如图3〕。该方法工艺过程与快速凝固法根本相同。不同的就是以液态金属代替水作为模壳的冷却介质,模壳直接浸入液态金属冷却剂中,散热大大增强,以至在感应器底部迅速发生热平衡,造成很高的,几乎不依赖浸入速度。冷却剂的温度,模壳传热性、厚度和形状,挡板位置,熔液温度等因素都会影响温度梯度。液态金属冷却剂要求有低的蒸气压和熔点以及有大的热容量和热导率。该法已被美国、前苏联等国用于航空发动机叶片的生产。图3MLC装置示意图3.5流态床冷却法〔FBQ法〕由于LMC法采用的低熔点合金含有有害元素,本钱高,可能使铸件产生低熔点金属脆性。Nakagawa等首先用流态床法来获得很高的GL,进行定向凝固〔如图4〕。用流态化的150号ZrO2粉作为冷却介质。Ar气用量大于4000cm3/min,冷却介质温度保持在100-120℃。在相同条件下,液态金属冷却法的温度梯度为100-300℃/cm,而流态床冷却法为100-200℃/cm,FBQ法根本可以得到也太金属冷却法那样高的温度梯度。图4FBQ装置示意图3.6传统定向凝固技术存在的问题不管上述哪种方法,它们的主要缺点是冷却速度太慢,即使是液态金属冷却法,其冷却速度仍不够高,这样产生的一个弊端就是使得凝固组织有充分的时间长大、粗化,以致产生严重的枝晶偏析,限制了材料性能的提高。造成冷却速度慢的主要原因是凝固界面与液相中最高温度面距离太远,固液界面并不处于最正确位置,因此所获得的温度梯度不大,这样为了保证界面前液相中没有稳定的结晶核心的形成,所能允许的最大凝固速度就有限。为了进一步细化材料的组织结构,减轻甚至消除元素的微观偏析,有效地提高材料的性能,就需提高凝固过程的冷却速率。在定向凝固技术中,冷却速率的提高,可以通过提高凝固过程中固液界面的温度梯度和生长速率来实现。因而如何采用新工艺、新方法去实现高温度梯度和大生长速率的定向凝固,是当今众多研究者追求的目标。4新型定向凝固技术4.1超高温度梯度定向凝固〔ZMLMC〕[9]上世纪90年代,西北工业大学李建国等人通过改变加热方式,在液态金属冷却法〔LMC法〕的根底上开展的一种新型定向凝固技术—区域熔化液态金属冷却法,即ZMLMC法〔如图5〕。这种方法将区域熔炼与液态金属冷却相结合,利用感应加热机中队了凝固洁面前沿液相进行加热,从而有效地提高了固液前沿的温度梯度。西北工业大学研制的ZMLMC定向凝固装置,其最高温度梯度可达1300K/cm,最大冷却速度可达50K/s。凝固速度可在6~1000um/s内调节。但是,这种方法单纯采用强制加热来提高温度梯度,从而提高了凝固速度,仍不能获得很大的冷却速度,因为需要散发掉的热量相对而言更多了,故冷却速率提高有限,一般很难到达快速凝固,目前这方便面的研究还都处于实验室规模,要进一步广泛运用,还有待遇进一步的努力和改良。图5ZMLMC装置示意图4.2深过冷定向凝固技术(SDS)[10-11]1981年,B·Lux等在动力学过冷熔体定向凝固方面开展了有益的探索,通过改良冷却条件获得了近100K的动力学过冷度,并施加很小的温度梯度,最终得到了直径21mm,长70~80mm的MAR-M-200高温合金定向凝固试样。西北工业大学采用玻璃净化和过热相结合的净化方法,获得合金熔体的热力学深过冷,并利用过冷度的遗传性,将熔体深过冷与定向凝固相结合,使熔体在固液界面前沿相中温度梯度GL﹤0的条件下凝固。他们称之为深过冷定向凝固〔SDS〕,整个实验过程的原理简图如图6所示。图6SDS装置示意图在坩埚中装入试样,装在高频悬浮熔炼线圈中循环过热使异质核心通过蒸发与分解方式去除,或装有净化剂,通过净化剂的吸附作用消除和钝化合金的异质核心,以此获得深过冷的合金熔体。再将坩埚的底部激冷,金属液内建立起一个自下而上的温度梯度,冷却过程中温度最低的底部先形核,晶体自下而上生长,形成定向排列的树枝晶骨架,其间是剩余的金属液。在随后的冷却过程中,这些金属液依靠向外界散热而向已有的枝晶骨架上凝固,最终获得了定向凝固组织。当熔体获得很大热力学过冷,即在形核就处于深过冷这种亚稳态时,由于固液两相的吉布斯自由能相差很大,一旦形核,生长速率很快,根本上不受外界散热条件的影响。所以金属体积对深过冷定向凝固的影响不大。深过冷与一般的定向凝固技术相比,可以免除复杂的抽拉装置,另外,凝固速度快,时间短可大幅度提高生产效率。深过冷熔体激发快速定向凝固技术能否成为一种实用的凝固技术(或工艺)还需解决两个问题。一是研究不同过冷度条件下过冷熔体激发形核后晶体生长方式和组织形成规律;确定适用于形成枝晶阵列微观组织的试验条件和工艺因素。其次是在上述研究结果的根底上最终解决大体积深过冷熔体激发快速定向凝固技术。4.3电磁约束成形定向凝固〔DSEMS〕[12]20世纪90年代初期,傅恒志等在ZMLMC法的根底上,利用电磁感应加热直接熔化感应器内的金属材料,利用在金属熔体表层局部产生的电磁压力来约束已熔化的金属熔体成形。这是一种无坩埚熔炼、无铸型、无污染的定向凝固成形技术[13-14],可得到具有柱状晶组织的铸件。电磁约束成形定向凝固技术是利用感应线圈代替传统的结晶器,依靠电磁力与金属熔体的外表张力约束成形的无模连续铸造技术,由于金属熔体与铸模几乎无任何物理接触,在保持自由外表状态下逐渐凝固,从而大大改善了铸坯的外表质量,提高了成材率〔如图7〕。同时,由于电磁约束成形定向凝固取消了粗厚、导热性能差的陶瓷模壳,实现无接触铸造,使冷却介质可以直接作用于金属铸件上,可获得更大的温度梯度,用于生产无(少)偏析、组织超细化、无污染的高纯难熔金属及合金[15],具有广阔的应用前景。但对某些密度大、电导率小的金属,实现完全无接触约束时,约束力小,不容易实现稳定的连续的凝固。对简单、对称截面的试件,感应线圈的设计相对容易,而对于复杂截面的试件,如何设计线圈,使电磁场分布合理,以得到尺寸精度符合要求的近终形试件,比拟困难。图7DSEMS装置示意图4.4连续定向凝固技术〔OCC法〕连续定向凝固的思想首先是由日本的大野笃美提出的。上世纪60年代末,大野笃美在研究Chalmers提出的等轴晶“结晶游离〞理论时,证实了等轴晶的形成不是熔液整体过冷引起,而是主要由铸型外表形核、别离带入溶液内部,枝晶断裂或重熔引起的。因而,控制凝固组织结构的关键是控制铸型外表的形核过程。大野笃美把Bridgeman定向凝固法控制晶粒生长的思想应用到连续铸造技术上,提出了一种最新的铸造工艺——热型连续法〔简称OCC法〕,即连续定向凝固技术。该技术是通过加热结晶器模型到金属熔点温度以上,铸型只能约束金属液相的形状,金属不会在型壁外表凝固;同时冷却系统与结晶器别离,在型外对逐渐进行冷却,维持很高的牵引方向的温度梯度,保证凝固界面是凸向液相的,以获得强烈的单向温度梯度,使熔体的凝固只在脱了结晶器的瞬间进行。随着铸锭不断离开结晶器,晶体的生长方向沿热流的反方向进行,获得定向结晶组织,甚至单晶组织〔如图8〕。这种方法最大的特点是改变传统的连续凝固中冷却结晶器为加热结晶器,熔体的凝固不在结晶器内部进行。此外,OCC法连铸过程中固相与铸型不接触,固液界面处于自由状态,固相与铸型之间是靠金属液的外表张力来联系,因此,不存在固相与铸型之间的摩擦力,可以连续拉延铸坯,并且所需的拉延力也很小,可以得到外表成镜面的铸坯。OCC法将高效的连铸技术和先进的定向凝固技术相结合,综合了二者的优点,是一种新型的近成品形状加工技术。图8OCC装置示意图4.5激光超高温梯度快速凝固技术〔LRM〕[16-18]自七十年代大功率激光器问世以来,激光能量高度集中的特性,使它具备了在作为定向凝固热源时可能获得比现有定向凝固方法高得多的温度梯度的可能性,在材料的加工和制备过程中得到了广泛的应用。早在20世纪70年代,Cline等就利用激光作为热源来定向凝固制作Al-Cu、Pd-Cd共晶薄膜,得到了规那么的层片状共晶组织,通过计算得到凝固时的温度梯度分别可达2.14×104K/cm和1.11×104K/cm。激光束作为热源,加热固定在陶瓷衬底上的高温合金薄片,激光束使金属外表迅速熔化,到达很大的过热度。在激光外表快速熔凝时,凝固界面的温度梯度可高达5×104K/cm。但一般的激光外表熔凝过程并不是定向凝固,因为熔池内部局部温度梯度和凝固速度是不断变化的,且两者都不能独立控制;同时,凝固组织是从基体外延生长的,界面上不同位置的生长方向也不相同。4.6二维定向凝固技术(BDS)20世纪80年代初,湘潭大学廖世杰教授[19]开展了二维定向凝固的研究工作,主要用于制备高性能叶片和圆盘件,并于90年代成功的制备出了铝合金和高温镍基合金的样件。对圆盘件而言,二维定向凝固的主要原理是控制热流方向,使得金属由边缘向中心定向生长,最后获得具有径向柱状晶(宏观)和枝晶轴(微观)组织的材料。二维定向凝固合金由于柱状晶轴沿径向排列,故其径向强度、塑性和冲击韧性得到大幅度提高,非常适合于制造径向性能要求高的旋转叶片和圆盘件(如高温发动机涡轮盘等)。5结语定向凝固技术的目的是获得稳定的定向凝固组织,合金性能又与组织细化程度紧密相关。因此,采取不同控制措施以获得细小的定向组织成为新一代定向凝固技术的开展方向。纵观定向凝固技术开展的历史就是温度梯度和凝固速度不断提高的历史。随着实验技术的改良和理论研究的深入,新一代的定向凝固技术必将为新材料的制备和新加工技术的开发提供广阔的前景,同时反过来也将促进凝固理论得到进一步完善和开展。参考文献[1]傅恒志,铸钢和铸造高温合金及其熔炼[M].西安:西北工业大学出版社,1985.[2]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.[3]吴和保,樊自田,黄乃瑜,等.镁合金真空低压消失模铸造流动性的研究[J].特种铸造及有色合金,2007,27(3):177-179.[4]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.206-213.[5]VersnyderFL,Shank
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消费金融公司用户画像构建方法与精准营销实战案例研究报告
- 教育培训机构品牌建设与市场推广策略优化与实施研究报告
- 2025年元宇宙社交平台社交平台社交互动数据挖掘与分析在内容创作中的应用报告
- 海南省2025年七下英语期中调研试题含答案
- 2025年环保产业园循环经济模式下的生态补偿与绿色税收政策效应分析报告
- 2025年智能家居生态构建与用户需求满足度研究报告
- 2025年医药行业CRO模式下的合同管理与风险管理报告
- 咨询工程师VIP课件
- 2025年医药企业研发外包(CRO)模式下的专利布局与竞争策略报告
- 2025年医药企业全球化战略与国际化经营策略报告
- QBT 2155-2004 旅行箱包行业标准
- 内蒙古锦山蒙古族中学2024年数学高一下期末综合测试模拟试题含解析
- 医院检验科实验室生物安全程序文件SOP
- 医疗设备仪器的清洁消毒
- 基于Matlab的巴特沃斯滤波器设计
- 儿童发展心理学全套课件
- 侵占公司资金还款协议
- 实验室搬迁方案
- 2013年10月自考英语二试题及答案和评分标准完整版
- 电大国开专科(附答案)《办公室管理》形考在线(形考任务五)试题
- 闻诊问诊切诊
评论
0/150
提交评论