中考数学总复习:第六单元_第1页
中考数学总复习:第六单元_第2页
中考数学总复习:第六单元_第3页
中考数学总复习:第六单元_第4页
中考数学总复习:第六单元_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第28讲圆的有关性

第29讲直线与圆的位置关系第30讲圆与圆的位置关系第31讲正多边形、扇形的面积、圆锥的计算问题第六单元圆中考数学总复习第六单元圆第28讲┃圆的有关性第28课时圆的有关性质第28讲┃考点聚焦考点聚焦考点1圆的有关概念圆的定义定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径定义2:圆是到定点的距离等于定长的点的集合第28讲┃考点聚焦弦连接圆上任意两点的________叫做弦直径经过圆心的弦叫做直径弧圆上任意两点间的部分叫做弧优弧大于半圆的弧叫做优弧劣弧小于半圆的弧叫做劣弧线段

第28讲┃考点聚焦考点2

点和圆的位置关系如果圆的半径是r,点到圆心的距离是d,那么点在圆外⇔________点在圆上⇔________点在圆内⇔________d>r

d=r

d<r

考点3确定圆的条件及相关概念第28讲┃考点聚焦确定圆的条件不在同一直线的三个点确定一个圆三角形的外心三角形三边________的交点,即三角形外接圆的圆心防错提醒锐角三角形的外心在三角形的内部,直角三角形的外心在直角三角形的斜边上,钝角三角形的外心在三角形的外部垂直平分线考点4圆的对称性第28讲┃考点聚焦圆既是一个轴对称图形又是一个________对称图形,圆还具有旋转不变性.

中心考点5垂径定理及其推论第28讲┃考点聚焦垂径定理垂直于弦的直径______,并且平分弦所对的两条弧推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧总结简言之,对于①过圆心;②垂直弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧中的任意两条结论成立,那么其他的结论也成立平分弦考点6圆心角、弧、弦之间的关系第28讲┃考点聚焦定理在同圆或等圆中,相等的圆心角所对的______相等,所对的______相等推论在同圆或等圆中,如果两个圆心角﹑两条弧或两条弦中有一组量相等,那么它们所对应的其余各组量也分别相等弧弦考点7圆周角第28讲┃考点聚焦圆周角定义顶点在圆上,并且两边都和圆相交的角叫做圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角________,都等于该弧所对的圆心角的________推论1在同圆或等圆中,相等的圆周角所对的弧______推论2半圆(或直径)所对的圆周角是______;90°的圆周角所对的弦是______推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是________三角形相等一半相等直角直径直角考点8圆内接多边形第28讲┃考点聚焦圆内接四边形如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形.这个圆叫做这个多边形的外接圆圆内接四边形的性质圆内接四边形的______对角互补考点9反证法第28讲┃考点聚焦定义不直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种方法叫做反证法步骤(1)假设命题的结论不正确,即提出与命题结论相反的假设(2)从假设的结论出发,推出矛盾(3)由矛盾的结果说明假设不成立,从而肯定原命题的结论正确第28讲┃归类示例归类示例►类型之一确定圆的条件命题角度:1.确定圆的圆心、半径;2.三角形的外接圆圆心的性质.10或8例1

[2012·资阳]

直角三角形的两边长分别为16和12,则此三角形的外接圆半径是________.第28讲┃归类示例第28讲┃归类示例(1)过不在同一条直线上的三个点作圆时,只需由两条线段的垂直平分线确定圆心即可,没有必要作出第三条线段的垂直平分线.事实上,三条垂直平分线交于同一点.(2)直角三角形的外接圆是以斜边为直径的圆.►类型之二垂径定理及其推论命题角度:1.垂径定理的应用;2.垂径定理的推论的应用.第28讲┃归类示例例2[2012·台州]

把球放在长方体纸盒内,球的一部分露出盒外,其截面如图28-1所示,已知EF=CD=16厘米,则球的半径为________厘米.图28-110第28讲┃归类示例[解析]首先找到EF的中点M,作MN⊥AD于点M,分别交圆于G、N两点,取GN的中点O,连接OF,设OF=x,则OM=16-x,MF=8.在直角三角形OMF中,OM2+MF2=OF2,即(16-x)2+82=x2,解得x=10.

垂径定理及其推论是证明两线段相等,两条弧相等及两直线垂直的重要依据之一,在有关弦长、弦心距的计算中常常需要作垂直于弦的线段,构造直角三角形.第28讲┃归类示例►类型之三圆心角、弧、弦之间的关系

例3

[2011·济宁]

如图28-2,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD、CD.(1)求证:BD=CD;(2)请判断B、E、C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.第28讲┃归类示例命题角度:在同圆或等圆中,圆心角、弧、弦之间的关系.图28-2第28讲┃归类示例

[解析](1)根据垂径定理和同圆或等圆中等弧对等弦证明;(2)利用同弧所对的圆周角相等和等腰三角形的判定证明DB=DE=DC.解:(1)证明:∵AD为直径,AD⊥BC,∴BD=CD.∴BD=CD.(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:BD=CD,∴∠BAD=∠CBD.∵∠DBE=∠CBD+∠CBE,∠DEB=∠BAD+∠ABE,∠CBE=∠ABE,∴∠DBE=∠DEB.∴DB=DE.由(1)知:BD=CD,∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.

►类型之四圆周角定理及推论D命题角度:1.利用圆心角与圆周角的关系求圆周角或圆心角的度数;2.直径所对的圆周角或圆周角为直角的圆的相关计算.第28讲┃归类示例

例4[2012·湘潭]

如图28-3,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=(

)A.20°B.40°C.50°D.80°图28-3[解析]先根据弦AB∥CD得出∠ABC=∠BCD=40°,再根据同弧所对的圆周角等于圆心角的一半,即可得出∠BOD=2∠BCD=2×40°=80°.第28讲┃归类示例圆周角定理及其推论建立了圆心角、弦、弧、圆周角之间的关系,最终实现了圆中的角(圆心角和圆周角)的转化.第28讲┃归类示例►类型之五与圆有关的开放性问题命题角度:1.给定一个圆,自由探索结论并说明理由;2.给定一个圆,添加条件并说明理由.第28讲┃归类示例

例5[2012·湘潭]

如图28-4,在⊙O上位于直径AB的异侧有定点C和动点P,AC=0.5AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.图28-4

(1)如图①,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图②中画出△PCD,并说明理由;(3)如图③,当点P运动到CP⊥AB时,求∠BCD的度数.

第28讲┃归类示例第28讲┃归类示例

[解析](1)由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠A=∠P.(2)由△PCD∽△ABC,可知当PC=AB时,△PCD≌△ABC,利用相似比等于1的相似三角形全等;(3)由∠ACB=90°,AC=0.5AB,可求得∠ABC的度数,利用同弧所对的圆周角相等得∠P=∠A=60°,通过证△PCB为等边三角形,由CD⊥PB,即可求出∠BCD的度数

第28讲┃归类示例解:(1)证明:∵AB为直径,∴∠ACB=∠D=90°.又∵∠CAB=∠DPC,∴△PCD∽△ABC.(2)如图,当点P运动到PC为直径时,△PCD≌△ABC.理由如下:∵PC为直径,∴∠PBC=90°,则此时D与B重合,∴PC=AB,CD=BC,故△PCD≌△ABC.(3)∵AC=0.5AB,∠ACB=90°,∴∠ABC=30°,∠CAB=60°.∴∠CPB=∠CAB=60°.∵PC⊥AB,∴∠PCB=90°-∠ABC=60°,∴△PBC为等边三角形.又CD⊥PB,∴∠BCD=30°.第29讲┃直线与圆的位置关系第29课时直线与圆的位置关系第29讲┃考点聚焦考点聚焦考点1直线和圆的位置关系设⊙O的半径为r,圆心O到直线l的距离为d,那么(1)直线l和⊙O相交⇔________(2)直线l和⊙O相切⇔________(3)直线l和⊙O相离⇔________d<r

d=r

d>r

第29讲┃考点聚焦考点2圆的切线切线的性质圆的切线________过切点的半径推论(1)经过圆心且垂直于切线的直线必过________;(2)经过切点且垂直于切线的直线必过________切线的判定(1)和圆有________公共点的直线是圆的切线(2)如果圆心到一条直线的距离等于圆的________,那么这条直线是圆的切线(3)经过半径的外端并且________这条半径的直线是圆的切线常添辅助线连接圆心和切点垂直于切点圆心唯一半径垂直于考点3切线长及切线长定理第29讲┃考点聚焦切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长切线长定理从圆外一点引圆的两条切线,它们的切线长________,圆心和这一点的连线________两条切线的夹角基本图形如图所示,点P是⊙O外一点,PA、PB切⊙O于点A、B,AB交PO于点C,则有如下结论:(1)PA=PB;(2)∠APO=∠BPO=∠OAC=∠OBC,∠AOP=∠BOP=∠CAP=∠CBP相等平分考点4三角形的内切圆第29讲┃考点聚焦三角形的内切圆与三角形各边都相切的圆叫三角形的内切圆,这个三角形叫圆的外切三角形三角形的内心三角形内切圆的圆心叫做三角形的内心.它是三角形______________的交点,三角形的内心到三边的________相等三条角平分线距离第29讲┃考点聚焦第29讲┃归类示例归类示例►类型之一直线和圆的位置关系的判定命题角度:1.定义法判定直线和圆的位置关系;2.d、r比较法判定直线和圆的位置关系.D例1

[2012·无锡]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是(

)A.相切B.相离C.相离或相切D.相切或相交第29讲┃归类示例[解析]分OP垂直于直线l,OP不垂于直线l两种情况讨论.当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.第29讲┃归类示例在判断直线与圆的位置关系的时候可以根据定义法,也可以利用圆心到直线的距离与圆的半径的大小关系进行比较,在判断其关系时要结合题目的已知条件选择正确的方法.►类型之二圆的切线的性质命题角度:1.已知圆的切线得出结论;2.利用圆的切线的性质进行有关的计算或证明.第29讲┃归类示例例2[2012·湛江]如图29-1,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求⊙O的半径.图29-1第29讲┃归类示例

[解析](1)先连接OD,则OD⊥BC,且AC⊥BC,再由平行从而得证;(2)设圆的半径为R,在Rt△BOD中利用勾股定理即可求出半径.解:(1)证明:连接OD,∵BC与⊙O相切于点D,∴OD⊥BC.又∵∠C=90°,∴OD∥AC,∴∠ODA=∠DAC.而OD=OA,∴∠ODA=∠OAD,∴∠OAD=∠DAC,即AD平分∠BAC.(2)设圆的半径为R,在Rt△BOD中,BO2=BD2+OD2,∵BE=2,BD=4,∴(BE+OE)2=BD2+OD2,即(2+R)2=42+R2,解得R=3,故⊙O的半径为3.第29讲┃归类示例

“圆的切线垂直于过切点的半径”,所以连接切点和圆心构造垂直或直角三角形是进行有关证明和计算的常用方法.第29讲┃归类示例►类型之三圆的切线的判定方法

例3

[2012·临沂]如图29-2,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.第29讲┃归类示例命题角度:1.利用圆心到一条直线的距离等于圆的半径,判定这条直线是圆的切线;2.利用一条直线经过半径的外端,且垂直于这条半径,判定这条直线是圆的切线.图29-2第29讲┃归类示例

[解析](1)首先连接OA,利用圆周角定理,即可求得∠AOC的度数,利用等边对等角求得∠PAO=90°,则可证得AP是⊙O的切线;(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长.第29讲┃归类示例第29讲┃归类示例变式题[2011·安顺]

已知:如图29-3,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.图29-3第29讲┃归类示例

[解析](1)连接CD,利用等腰三角形底边上的高也是底边上中线证明.

解:(1)证明:连接CD,因为BC为⊙O的直径,则CD⊥AB.∵AC=BC,∴AD=BD,即点D是AB的中点.(2)DE是⊙O的切线.证明:连接OD,则DO是△ABC的中位线,∴DO∥AC.又∵DE⊥AC,∴DE⊥DO,即DE是⊙O的切线.

在涉及切线问题时,常连接过切点的半径,要想证明一条直线是圆的切线,常常需要作辅助线.如果已知直线过圆上某一点,则作出过这一点的半径,证明直线垂直于半径;如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到直线的距离等于半径.第29讲┃归类示例►类型之四切线长定理的运用命题角度:1.利用切线长定理计算;2.利用切线长定理证明.第29讲┃归类示例

例4[2012·绵阳]如图29-4,PA、PB分别切⊙O于A、B两点,连接PO、AB相交于D,C是⊙O上一点,∠C=60°.(1)求∠APB的大小;(2)若PO=20cm,求△AOB的面积.图29-4

[解析](1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角定理,求得∠AOB的度数,继而求得∠APB的大小;(2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.第29讲┃归类示例第29讲┃归类示例(1)利用过圆外一点作圆的两条切线,这两条切线的长相等,是解题的基本方法.(2)利用方程思想求切线长常与勾股定理,切线长定理,圆的半径相等紧密相连.第29讲┃归类示例►类型之五三角形的内切圆命题角度:1.三角形的内切圆的定义;2.求三角形的内切圆的半径.第29讲┃归类示例

例5[2012·玉林]如图29-5,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN,与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为(

)图29-5C第29讲┃归类示例

[解析]连接OD、OE,则∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=r.根据切线长定理得出MP=DM,NP=NE,Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,故选C.解三角形内切圆问题,主要是切线长定理的运用.解决此类问题,常转化到直角三角形中,利用勾股定理或直角三角形的性质及三角函数等解决.第29讲┃归类示例第30讲┃圆与圆的位置关系第30课时圆与圆的位置关系第30讲┃考点聚焦考点聚焦考点1

圆和圆的位置关系设⊙O1,⊙O2的半径分别为R,r(R>r),圆心之间的距离为d,那么⊙O1和⊙O2外离⇔________外切⇔________相交⇔________内切⇔________两圆内含⇔________d>R+r

d=R+r

R-r<d<R+r

d=R-rd<R-r

第30讲┃考点聚焦考点2相交两圆的性质性质(1)相交两圆的连心线垂直平分两圆的公共弦(2)两圆相交时的图形是轴对称图形点拨解有关两圆相交问题时,常常要作出连心线,公共弦,或者连接交点与圆心,从而把两圆的半径,公共弦长的一半,圆心距等集中在同一个三角形中,利用三角形的知识加以解决考点3相切两圆的性质第30讲┃考点聚焦相切两圆的性质如果两圆相切,那么两圆的连心线经过________两圆相切时的图形是轴对称图形,通过两圆圆心的连线(连心线)是它的对称轴切点第30讲┃归类示例归类示例►类型之一圆和圆的位置关系的判别命题角度:1.根据两圆的公共点的个数确定;2.根据两圆的圆心距与半径的数量关系确定.D例1

[2012·上海]如果两圆的半径长分别为6和2,圆心距为3,那么这两圆的关系是(

)A.外离B.相切C.相交D.内含[解析]∵两个圆的半径分别为6和2,圆心距为3,又∵6-2=4,4>3,∴这两个圆的位置关系是内含.►类型之二和相交两圆有关的计算命题角度:1.相交两圆的连心线与两圆的公共弦的关系;2.和勾股定理有关的计算.第30讲┃归类示例例2[2012·宜宾]如图30-1,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=√2,过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C、D,连接CP、DP,过点Q任作一直线AB分别交⊙O1和⊙O2于点A、B,连接AP、BP、AC、DB,且AC与DB的延长线交于点E.图30-1第30讲┃归类示例第30讲┃归类示例►类型之三和相切两圆有关的计算

例3

(1)计算:如图30-2①,直径为a的三等圆⊙O1、⊙O2、⊙O3两两外切,切点分别为A、B、C

,求O1A的长(用含a的代数式表示);第30讲┃归类示例命题角度:1.相切两圆的性质;2.两圆相切的简单应用.图30-2①第30讲┃归类示例图30-2

(2)探索:若干个直径为a的圆圈分别按如图30-2②所示的方案一和如图30-2③所示的方案二的方式排放,探索并求出这两种方案中n层圆圈的高度hn和h′n(用含n、a的代数式表示);第30讲┃归类示例

(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(√3≈1.73)

第30讲┃归类示例第30讲┃归类示例第31讲┃正多边形、扇形的面积、圆锥的计算问题第31课时正多边形、扇形的面积、圆锥的计算问题第31讲┃考点聚焦考点聚焦考点1正多边形和圆正多边形和圆的关系正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆正多边形和圆的有关概念一个正多边形外接圆的圆心叫做这个正多边形的________正多边形外接圆的半径叫做正多边形的________正多边形每一边所对的圆心角叫做正多边形的________正多边形的中心到正多边形的一边的距离叫做正多边形的________中心

半径

中心角

边心距

第31讲┃考点聚焦第31讲┃考点聚焦考点2圆的周长与弧长公式圆的周长若圆的半径是R,则圆的周长C=________弧长公式若一条弧所对的圆心角是n°,半径是R,则弧长l=________.在应用公式时,n和180不再写单位2πR

考点3扇形的面积公式

第31讲┃考点聚焦扇形面积(1)S扇形=______(n是圆心角度数,R是半径);(2)S扇形=______(l是弧长,R是半径)弓形面积S弓形=S扇形±S△考点4

圆锥的侧面积与全面积第31讲┃考点聚焦图形第31讲┃考点聚焦圆锥简介(1)h是圆锥的高;(2)a是圆锥的母线,其长为侧面展开后所得扇形的________;(3)r是底面半径;(4)圆锥的侧面展开图是半径等于________长,弧长等于圆锥底面________的扇形圆锥的侧面积S侧=________圆锥的全面积S全=S侧+S底=πra+πr2半径母线周长πra第31讲┃归类示例归类示例►类型之一正多边形和圆命题角度:1.正多边形和圆有关的概念;2.正多边形的有关计算.A例1

[2012·安徽]为增加绿化面积,某小区将原来正方形地砖更换为如图31-1所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(

)A.2a2B.3a2C.4a2D.5a2第31讲┃归类示例

圆的内接正多边形的每条边所对的圆心角都相等,并且所对圆心角的和是360°.第31讲┃归类示例►类型之二计算弧长命题角度:1.已知圆心角和半径求弧长;2.利用转化思想求弧长.第31讲┃归类示例例2[2012·广安]如图31-2,Rt△ABC的边BC位于直线l上,AC=√3,∠ACB=90°,∠A=30°,若Rt△ABC由现在的位置向右无滑动翻转,当点A第3次落在直线l上时,点A所经过的路线的长为________(结果用含π的式子表示).图31-2第31讲┃归类示例

[解析]根据含30°角的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°.点A先是以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线l上时,点A所经过的路线的长.

第31讲┃归类示例►类型之三

计算扇形面积

例3

[2012·泰州]

如图31-3,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论