2023年四川省成都市都江堰市数学九上期末监测试题含解析_第1页
2023年四川省成都市都江堰市数学九上期末监测试题含解析_第2页
2023年四川省成都市都江堰市数学九上期末监测试题含解析_第3页
2023年四川省成都市都江堰市数学九上期末监测试题含解析_第4页
2023年四川省成都市都江堰市数学九上期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年四川省成都市都江堰市数学九上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.﹣2019的倒数的相反数是()A.﹣2019 B. C. D.20192.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次3.如图,A,B是反比例函数y=图象上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABCD=9,则k值为()A.8 B.10 C.12 D.1.4.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.5.如图,△ABC∽△ADE,则下列比例式正确的是()A. B. C. D.6.抛物线经过点与,若,则的最小值为()A.2 B. C.4 D.7.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是()A.①④ B.①② C.②③④ D.②③8.若,相似比为1:2,则与的面积的比为()A.1:2 B.2:1 C.1:4 D.4:19.如图,点A,B,C都在⊙O上,∠ABC=70°,则∠AOC的度数是()A.35° B.70° C.110° D.140°10.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm二、填空题(每小题3分,共24分)11.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.12.在菱形中,周长为,,则其面积为______.13.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为的大视力表制作一个测试距离为的小视力表.如图,如果大视力表中“”的高度是,那么小视力表中相应“”的高度是__________.14.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.15.如图,在中,,,,则的长为_____.16.如图,菱形ABCD的三个顶点在二次函数的图象上,点A、B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为____________.17.如图,是锐角的外接圆,是的切线,切点为,,连结交于,的平分线交于,连结.下列结论:①平分;②连接,点为的外心;③;④若点,分别是和上的动点,则的最小值是.其中一定正确的是__________(把你认为正确结论的序号都填上).18.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.三、解答题(共66分)19.(10分)用合适的方法解方程:(1);(2).20.(6分)已知关于x的一元二次方程有两个相等的实数根,求m的值.21.(6分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.22.(8分)如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.23.(8分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.24.(8分)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.25.(10分)甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)求第一次甲将花传给丁的概率;(2)求经过两次传花,花恰好回到甲手中的概率.26.(10分)如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm,求四边形ABCD的面积.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先求-2019的倒数,再求倒数的相反数即可;【详解】解:﹣2019的倒数是,的相反数为,故答案为:C.【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.2、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.3、B【分析】分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,根据反比例函数图象上点的坐标特征得到k=OD•t=t•5t,则OD=5t,所以B点坐标为(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四边形ABCD=S△ECD﹣S△EAB得到•5t•5t﹣•4t•4t=9,解得t2=2,然后根据k=t•5t进行计算.【详解】解:分别延长CA、DB,它们相交于E,如图,设AC=t,则BD=t,OC=5t,∵A,B是反比例函数y=图象上两点,∴k=OD•t=t•5t,∴OD=5t,∴B点坐标为(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四边形ABCD=S△ECD﹣S△EAB,∴•5t•5t﹣•4t•4t=9,∴t2=2,∴k=t•5t=5t2=5×2=2.故选:B.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.4、B【解析】试题分析:根据中心对称图形的概念,A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.考点:中心对称图形5、D【解析】∵△ABC∽△ADE,∴,故选D.【点睛】本题考查相似三角形的性质,掌握相似三角形的对应边成比例这一性质是解答此题的关键.6、D【分析】将点A、B的坐标代入解析式得到y1与y2,再根据,即可得到答案.【详解】将点A、B的坐标分别代入,得,,∵,∴,得:b,∴b的最小值为-4,故选:D.【点睛】此题考查二次函数点与解析式的关系,解不等式求取值,正确理解题意是解题的关键.7、D【分析】根据函数的图象中的信息判断即可.【详解】①由图象知小球在空中达到的最大高度是;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:,把代入得,解得,∴函数解析式为,把代入解析式得,,解得:或,∴小球的高度时,或,故④错误;故选D.【点睛】本题考查了二次函数的应用,解此题的关键是正确的理解题意8、C【解析】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵,相似比为1:2,∴与的面积的比为1:4.故选C.考点:相似三角形的性质.9、D【分析】根据圆周角定理问题可解.【详解】解:∵∠ABC所对的弧是,

∠AOC所对的弧是,

∴∠AOC=2∠ABC=2×70°=140°.

故选D.【点睛】本题考查圆周角定理,解答关键是掌握圆周角和同弧所对的圆心角的数量关系.10、C【解析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:∵扇形的弧长=cm,圆锥的底面半径为4π÷2π=2cm,∴这个圆锥形筒的高为cm.故选C.二、填空题(每小题3分,共24分)11、1【分析】设袋子中的红球有x个,利用红球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:设袋子中的红球有x个,根据题意,得:=0.7,解得:x=1,经检验:x=1是分式方程的解,∴袋子中红球约有1个,故答案为:1.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意列式求解.12、8【分析】根据已知求得菱形的边长,再根据含的直角三角形的性质求出菱形的高,从而可求菱形的面积.【详解】解:如图,作AE⊥BC于E,∵菱形的周长为,∴AB=BC=4,∵,∴AE==2,∴菱形的面积=.故答案是:8.【点睛】此题主要考查了菱形的性质,利用含的直角三角形的性质求出菱形的高是解题的关键.13、【分析】先利用平行线证明相似,再利用相似三角形的性质得到比例式,即可计算出结果.【详解】解:如图,

由题意得:CD∥AB,

∴,,∵AB=3.5cm,BE=5m,DE=3m,,∴CD=2.1cm,

故答案是:2.1cm.【点睛】本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行得到相似列出比例式,可以计算出结果.14、1【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【详解】解:由题意可得,红球的概率为60%.则白球的概率为10%,这个口袋中白球的个数:10×10%=1(个),故答案为1.【点睛】本题考查了概率的问题,掌握概率公式、以频率计算频数是解题的关键.15、【解析】过A作AD垂直于BC,在直角三角形ABD中,利用锐角三角函数定义求出AD的长,在直角三角形ACD中,利用锐角三角函数定义求出CD的长,再利用勾股定理求出AC的长即可.【详解】解:过作,在中,,,∴,在中,,∴,即,根据勾股定理得:,故答案为【点睛】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.16、(2,).【详解】解:由题意可知:抛物线y=ax2-2ax+(a<0)的对称轴是直线x=1,与y轴的交点坐标是(2,),即点B的坐标是(2,)由菱形ABCD的三个顶点在二次函数y=ax2-2ax+(a<0)的图象上,点A,B分别是抛物线的顶点和抛物线与y轴的交点,∴点B与点D关于直线x=1对称,得到点D的坐标为(2,).故答案为(2,).17、【分析】如图1,连接,通过切线的性质证,进而由,即可由垂径定理得到F是的中点,根据圆周角定理可得,可得平分;由三角形的外角性质和同弧所对的圆周角相等可得,可得,可得点为得外心;如图,过点C作交的延长线与点通过证明,可得;如图,作点关于的对称点,当点在线段上,且时,.【详解】如图,连接,∵是的切线,∴,∵∴,且为半径∴垂直平分∴∴∴平分,故正确点的外心,故正确;如图,过点C作交的延长线与点,故正确;如图,作点关于的对称点,点与点关于对称,当点在线段上,且时,,且∴的最小值为;故正确.故答案为:.【点睛】本题是相似综合题,考查了圆的相关知识,相似三角形的判定和性质,轴对称的性质,灵活运用这些性质进行推理是本题的关键.18、6.【解析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.三、解答题(共66分)19、(1);(2),.【分析】(1)把方程整理后左边进行因式分解,求方程的解即可;(2)方程整理配方后,开方即可求出解;【详解】(1),移项整理得:,提公因式得:,∴或,解得:;(2),方程移项得:,二次项系数化成1得:,配方得:,即,开方得:,解得:.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法,熟练掌握一元二次方程的各种解法是解题的关键.20、m1=,m2=.【解析】根据一元二次方程有两个相等实数根得△=0,再表示出含m的一元二次方程,解方程即可.【详解】解:∵原方程有两个相等的实数根,即△=0,△=4-4()=0,整理得:,求根公式法解得:m=,∴m1=,m2=.【点睛】本题考查了含参一元二次方程的求解,属于简单题,熟悉求根公式和根的判别式是解题关键.21、(1)共调查了50名学生,补图见解析;(2).【分析】(1)设本次测试共调查了名学生,根据总体、个体、百分比之间的关系列出方程即可解决.用总数减去、、中的人数,即可解决,画出条形图即可.(2)画树状图展示所有12种等可能的结果数,再找出恰好抽到有1名女生的结果数,然后根据概率公式计算.【详解】解:(1)设本次测试共调查了名学生.由题意,解得:∴本次测试共调查了50名学生.则测试结果为等级的学生数=人.条形统计图如图所示,(2)画树状图:共有12种等可能的结果数,其中恰好抽到有1名女生的结果数6,所以恰好抽到有1名女生的概率==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.也考查了统计图.解题的关键是灵活运用这些知识解决问题.22、(1)见解析;(2)y=x+4;(3).【分析】(1)根据矩形的性质和余角的性质得到∠A=∠ADC=∠DCB=90°,∠ADE=∠CDF,最后运用相似三角形的判定定理证明即可;(2)运用相似三角形的性质解答即可;(3)根据轴对称图形的性质可得DE=BE,再运用勾股定理可求出AE,DE的长,最后用余弦的定义解答即可.【详解】(1)证明∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.【点睛】本题属于相似形三角形综合题,考查了相似三角形的判定和性质、矩形的性质、勾股定理、轴对称图形的性质等知识,灵活运用相似三角形的判定和性质是解答本题的关键.23、(1);;(2)的面积最大值是,此时点坐标为;(2)的最小值是2.【分析】(1)先写出平移后的抛物线解析式,再把点代入可求得的值,由的面积为1可求出点的纵坐标,代入抛物线解析式可求出横坐标,由、的坐标可利用待定系数法求出一次函数解析式;(2)作轴交于,如图,利用三角形面积公式,由构建关于E点横坐标的二次函数,然后利用二次函数的性质即可解决问题;(2)作关于轴的对称点,过点作于点,交轴于点,则,利用锐角三角函数的定义可得出,此时最小,求出最小值即可.【详解】解:(1)将二次函数的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为,∵,∴点的坐标为,代入抛物线的解析式得,,∴,∴抛物线的解析式为,即.令,解得,,∴,∴,∵的面积为1,∴,∴,代入抛物线解析式得,,解得,,∴,设直线的解析式为,∴,解得:,∴直线的解析式为.(2)过点作轴交于,如图,设,则,∴,∴,,∴当时,的面积有最大值,最大值是,此时点坐标为.(2)作关于轴的对称点,连接交轴于点,过点作于点,交轴于点,∵,,∴,,∴,∵,∴,∴,∵、关于轴对称,∴,∴,此时最小,∵,,∴,∴.∴的最小值是2.【点睛】主要考查了二次函数的平移和待定系数法求函数的解析式、二次函数的性质、相似三角形的判定与性质、锐角三角函数的有关计算和利用对称的性质求最值问题.解(1)题的关键是熟练掌握待定系数法和相关点的坐标的求解;解(2)题的关键是灵活应用二次函数的性质求解;解(2)题的关键是作关于轴的对称点,灵活应用对称的性质和锐角三角函数的知识,学会利用数形结合的思想和转化的数学思想把求的最小值转化为求的长度.24、(1)A社区居民人口至少有2.1万人;(2)10.【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;

(2)A社区的知晓人数+B社区的知晓人数=7.1×76%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.1−x)万人,

依题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论