版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年陕西西安铁一中学九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°2.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()A.7:12 B.7:24 C.13:36 D.13:723.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形 B.中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形4.已知如图,中,,点在边上,且,则的度数是().A. B. C. D.5.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.m C.m D.4m6.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣17.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.8 B.16 C.24 D.328.如图,⊙O是直角△ABC的内切圆,点D,E,F为切点,点P是上任意一点(不与点E,D重合),则∠EPD=()A.30° B.45° C.60° D.75°9.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长尺,则根据题意,可列方程()A. B.C. D.10.下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块11.如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为()A.35° B.55° C.60° D.70°12.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>2二、填空题(每题4分,共24分)13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是____.14.如图,已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如果AD:DB=1:2,则CE:CF的值为____________.15.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.16.请将二次函数改写的形式为_________________.17.已知:中,点是边的中点,点在边上,,,若以,,为顶点的三角形与相似,的长是____.18.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.三、解答题(共78分)19.(8分)如图,直线y=ax+b与x轴交于点A(4,0),与y轴交于点B(0,﹣2),与反比例函数y=(x>0)的图象交于点C(6,m).(1)求直线和反比例函数的表达式;(2)连接OC,在x轴上找一点P,使△OPC是以OC为腰的等腰三角形,请求出点P的坐标;(3)结合图象,请直接写出不等式≥ax+b的解集.20.(8分)如图,在直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A(-3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.21.(8分)(1)计算:(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积.22.(10分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.23.(10分)如图,矩形的两边的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,求反比例函数的表达式.24.(10分)如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒1个单位长度的速度沿边向终点运动,设运动的时间为秒,.(1)直接写出关于的函数解析式及的取值范围:_______;(2)当时,求的值;(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.25.(12分)某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.26.如图,是的平分线,点在上,以为直径的交于点,过点作的垂线,垂足为点,交于点.(1)求证:直线是的切线;(2)若的半径为,,求的长.
参考答案一、选择题(每题4分,共48分)1、C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.2、B【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AB=CD,AD=BC,
∵DF=CF,BE=CE,
∴,,
∴,
∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6S△AGH,
∴S△AGH:=1:6,∵E、F分别是边BC、CD的中点,∴,∴,∴,∴=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.3、B【分析】根据轴对称和中心对称图形的概念判断即可.【详解】“赵爽弦图”是中心对称图形,但不是轴对称图形,故选:B.【点睛】本题主要考查轴对称和中心对称,会判断轴对称图形和中心对称图形是解题的关键.4、B【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【详解】设∠A=x.
∵AD=BD,
∴∠ABD=∠A=x;
∵BD=BC,
∴∠BCD=∠BDC=∠ABD+∠A=2x;
∵AB=AC,
∴∠ABC=∠BCD=2x,
∴∠DBC=x;
∵x+2x+2x=180°,
∴x=36°,
∴∠A=36°故选:B【点睛】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.5、C【详解】如图,由题意得:AP=3,AB=6,∴在圆锥侧面展开图中故小猫经过的最短距离是故选C.6、C【解析】试题解析:关于的一元二次方程没有实数根,,解得:故选C.7、B【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,
∴=0.5,
解得:m=1.
故选:B.【点睛】考查了利用频率估计概率,解题关键是利用了用大量试验得到的频率可以估计事件的概率.8、B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故选:B.【点睛】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.9、B【分析】根据题意,门框的长、宽以及竹竿长是直角三角形的三边长,等量关系为:门框长的平方+门框宽的平方=门的对角线长的平方,把相关数值代入即可求解.【详解】解:∵竹竿的长为x尺,横着比门框宽4尺,竖着比门框高2尺.
∴门框的长为(x-2)尺,宽为(x-4)尺,
∴可列方程为(x-4)2+(x-2)2=x2,
故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,得到门框的长,宽,竹竿长是直角三角形的三边长是解决问题的关键.10、B【解析】根据事件发生的可能性大小即可判断.【详解】A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B.抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C.抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D.从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.11、B【分析】直接根据圆周角定理进行解答即可.【详解】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=110°,∴∠ACB=∠AOB=55°.故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12、D【分析】根据一元二次方程有两个不相等的实数根,得△即可求解.【详解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△解得k>2.故选D.【点睛】本题考查一元二次方程△与参数的关系,列不等式是解题关键.二、填空题(每题4分,共24分)13、【解析】本题应分别求出正方形的总面积和阴影部分的面积,用阴影部分的面积除以总面积即可得出概率.【详解】解:小虫落到阴影部分的概率=,故答案为:.【点睛】本题考查的是概率的公式,用到的知识点为:概率=相应的面积与总面积之比.14、【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵,∴∴∴,∴.故答案为:.【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.15、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【点睛】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16、【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:;故答案为:.【点睛】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).17、4或【分析】根据相似三角形对应边成比例进行解答.【详解】解:分两种情况:
①∵△AEF∽△ABC,
∴AE:AB=AF:AC,即:②∵△AEF∽△ACB,
∴AF:AB=AE:AC,
即:故答案为:4或【点睛】本题考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.18、3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,=0.3,解得m=3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.三、解答题(共78分)19、(1)y=x﹣1;y=;(1)点P1的坐标为(,0),点P1的坐标为(﹣,0),(11,0);(3)0<x≤2【解析】(1)根据点A,B的坐标,利用待定系数法即可求出直线AB的函数表达式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点C的坐标,利用待定系数法即可求出反比例函数的表达式;(1)过点C作CD⊥x轴,垂足为D点,利用勾股定理看求出OC的长,分OC=OP和CO=CP两种情况考虑:①当OP=OC时,由OC的长可得出OP的长,进而可求出点P的坐标;②当CO=CP时,利用等腰三角形的性质可得出OD=PD,结合OD的长可得出OP的长,进而可得出点P的坐标;(3)观察图形,由两函数图象的上下位置关系,即可求出不等式≥ax+b的解集.【详解】解:(1)将A(4,0),B(0,﹣1)代入y=ax+b,得:,解得:,∴直线AB的函数表达式为y=x﹣1.当x=2时,y=x﹣1=1,∴点C的坐标为(2,1).将C(2,1)代入y=,得:1=,解得:k=2,∴反比例函数的表达式为y=.(1)过点C作CD⊥x轴,垂足为D点,则OD=2,CD=1,∴OC=.∵OC为腰,∴分两种情况考虑,如图1所示:①当OP=OC时,∵OC=,∴OP=,∴点P1的坐标为(,0),点P1的坐标为(﹣,0);②当CO=CP时,DP=DO=2,∴OP=1OD=11,∴点P3的坐标为(11,0).(3)观察函数图象,可知:当0<x<2时,反比例函数y=的图象在直线y=x﹣1的上方,∴不等式≥ax+b的解集为0<x≤2.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、等腰三角形的性质、勾股定理以及反比例函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次(反比例)函数的关系式;(1)分OC=OP和CO=CP两种情况求出点P的坐标;(3)根据两函数图象的上下位置关系,找出不等式的解集.20、(1);(2)存在,理由见解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)将点A、B的坐标代入函数解析式计算即可得到;(2)点D应在x轴的上方或下方,在下方时通过计算得△ABD的面积是△ABC面积的倍,判断点D应在x轴的上方,设设D(m,n),根据面积关系求出m、n的值即可得到点D的坐标;(3)设E(x,y),由点E是以点C为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E的坐标为E,再根据点F是AE中点表示出点F的坐标,再设设F(m,n),再利用m、n、与x的关系得到n=,通过计算整理得出,由此得出F点的轨迹是以为圆心,以为半径的圆,再计算最大值与最小值即可.【详解】解:(1)将点A(-3,0)、B(1,0)代入y=ax2+bx-2中,得,解得,∴(2)若D在x轴的下方,当D为抛物线顶点(-1,)时,,△ABD的面积是△ABC面积的倍,,所以D点一定在x轴上方.设D(m,n),△ABD的面积是△ABC面积的倍,n==m=-4或m=2D(-4,)或(2,)(3)设E(x,y),∵点E是以点C为圆心且1为半径的圆上的动点,∴,∴y=,∴E,∵F是AE的中点,∴F的坐标,设F(m,n),∴m=,n=,∴x=2m+3,∴n=,∴2n+2=,∴(2n+2)2=1-(2m+3)2,∴4(n+1)2+4()2=1,∴,∴F点的轨迹是以为圆心,以为半径的圆,∴最大值:,最小值:最大值;最小值【点睛】此题是二次函数的综合题,考察待定系数法解函数关系式,图像中利用三角形面积求点的坐标,注意应分x轴上下两种情况,(3)还考查了两点间的中点坐标的求法,两点间的距离的确定方法:两点间的距离的平方=横坐标差的平方+纵坐标差的平方.21、(1)2;(2)90π【分析】(1)分别利用零次幂、乘方、负整数指数幂、特殊角的三角函数计算各项,最后作加减法;(2)根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【详解】解:(1)原式=1+(-1)+3-1=2;(2)由三视图可知:圆锥的高为12,底面圆的直径为10,
∴圆锥的母线为:13,
∴根据圆锥的侧面积公式:πrl=π×5×13=65π,
底面圆的面积为:πr2=25π,
∴该几何体的表面积为90π.
故答案为:90π.【点睛】本题主要考查了实数的混合运算和圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.22、(1)50;(2)2【解析】(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【详解】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)(2)设小明放入红球x个.根据题意得:解得:x=2(个).经检验:x=2是所列方程的根.答:小明放入的红球的个数为2.【点睛】本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.23、(1)m=-12;(2)【分析】(1)根据矩形的性质求出点E的坐标,根据待定系数法即可得到答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得BF的长,可得点F的坐标,根据待定系数法,可得m的值,可得答案.【详解】(1)∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=8,∠D=∠DCB=90°,∵点B坐标为(-6,0),E为CD中点,∴E(-3,4),∵函数图象过E点,∴m=-34=-12;(2)∵∠D=90°,AD=3,DE=CD=4,∴AE=5,∵AF-AE=2,∴AF=7,∴BF=1,设点F(x,1),则点E(x+3,4),∵函数图象过点E、F,∴x=4(x+3),解得x=-4,∴F(-4,1),∴m=-4,∴反比例函数的表达式是.【点睛】此题考查待定系数法求反比例函数的解析式,勾股定理,线段中点的特点,矩形的性质,(2)中可以设点E、F中一个点的坐标,表示出另一个点的坐标,由两点在同一个函数图象上可得到等式求出函数解析式,注意解题方法的积累.24、(1);(2),;(3)经过点的双曲线的值不变.值为.【分析】(1)过点P作PE⊥BC于点E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省宜春市丰城市第九中学2024-2025学年高二上学期期中考试(日新班)政治试卷(含解析)
- 《反传销知识讲座的》课件
- 2024年度二手农机销售代理与合作合同
- 通史版2025届高考历史统考一轮复习第16讲课题1改革开放新篇章-从计划经济到市抄济和社会生活的变迁学案含解析
- 2024年度环保技术与设备采购合同(含治理、监测、节能减排)
- 2024别墅房地产销售代理合同
- 2024年度农业产品代销合同
- 2024年度医院配电室紧急照明系统合同
- 2024年度技术研发与技术服务合同终止协议
- 2024北京夫妻共同财产清算合同
- 《月迹》课堂实录全面版
- 法语常用动词变位(完整版)
- 高中化学学业水平考试合格考知识点总结(共19页)
- 尔雅超星语言与文化
- 传热学沸腾强化
- 工程量确认单格式
- MODF架跳纤规范_图文
- 医院焦虑抑郁情绪测量表(HAD量表)
- 煤矿消防安全管理制度范本
- 和易充智能充电系统(PPT课件)
- 30MW光伏项目送出系统工程施工组织总设计1
评论
0/150
提交评论